Transparent TSN for Agnostic End-hosts via
P4-based Traffic Characterization at Switches

Cornelia Briilhart*, Nurefsan Sertbas Biilbiil*, Nils Ole Tippenhauerf, Mathias Fischer*
*Universitit Hamburg, Germany
{cornelia.bruelhart, nurefsan.sertbas, mathias.fischer} @uni-hamburg.de
fCISPA Helmholtz Center for Information Security, Germany
tippenhauer @cispa.de

Abstract—Mission-critical networks currently face a transition
from legacy network protocols to advanced time-sensitive net-
working (TSN) standards. TSN guarantees reliable and deter-
ministic communication using off-the-shelf Ethernet equipment.
However, end-hosts must be TSN-aware and may pose security
risks by arbitrarily over-allocating resources. Integrating central
instances like a software-defined networking (SDN) controller
into TSN networks to streamline network management presents
a promising solution. This raises concerns regarding latency
in communication between switches and the controller, as well
as among switches themselves. To address this, we propose an
approach that renders TSN transparent to end-hosts, eliminating
the need for their involvement in resource reservations. We
embed packet processing logic in P4-enabled TSN switches to
characterize network traffic intelligently. This enables switches
to allocate network resources autonomously and adjust real-time
traffic handling mechanisms. Leveraging P4 storage structures
introduces statefulness for traffic characterization computing
within the inherently stateless P4 language. Our experiments
demonstrate that our P4-enhanced switches require a minimal
0.014 MB of switch memory to distinguish between periodic and
non-periodic traffic with an 80% precision while incurring a
mere (.2 ms forwarding latency per packet.

Index Terms—P4 Programming, Traffic Characterization,
Software-Defined Networking, Time-Sensitive Networking, Real-
Time Traffic Management

I. INTRODUCTION

ISSION-CRITICAL networks, characterized by their

deterministic and reliable communication in low-
latency settings, face the challenge of adapting to modern
system environments’ increasing heterogeneity and agility. In
response, time-sensitive networking (TSN) has emerged, offer-
ing deterministic and reliable communication in low-latency
settings that align well with the demands of modern system
environments. For example, network infrastructure in smart
manufacturing facilities must meet stringent quality of service
(QoS) and time-sensitive demands, where integrity in real-time
data exchange is crucial for seamless operations. However, as
there is a shift towards adopting cost-effective commercial off-
the-shelf (COTS) hardware and software over specialized field
buses, orchestrating interactions among network components
remains complex in real-time applications. Implementing TSN
using COTS hardware and software can ensure QoS, but it
requires for end-hosts to be TSN-aware, thus restricting the
network’s flexibility.

In response to this, ongoing research explores the feasibility

of central control in time-sensitive networks. Network man-
agement can be facilitated, e.g., through the holistic view of
a centralized entity, similar to the concept of software-defined
networking (SDN) [[1]. SDN allows modification and spec-
ification of network behaviour through software, effectively
separating the control plane from the data plane. A central
entity, known as the SDN controller, dynamically manages the
traffic and configures the forwarding behaviour of the switches
based on the specific application requirements. However, SDN
also introduces challenges, especially in heterogeneous net-
work environments, such as TSN. The central (TSN) controller
must accommodate diverse device characteristics and network
policies. This may result in latencies of up to 0.3 ms per
packet [2] and significantly impact network operations’ real-
time nature. Additionally, the dynamic traffic and resource or-
chestration in TSN networks involve frequent communication
between network components and the TSN controller 3], [4].
As network traffic increases, the controller must process high
volumes of messages, which may become a bottleneck in the
network.
These challenges show the urgent need for a transparent TSN
mechanism that guarantees dynamic, deterministic, and low-
latency communication for the desired QoS without man-
dating TSN-capable end-hosts. In this work, we propose to
shift TSN tasks and configuration responsibilities from the
network’s periphery (the end-hosts) to its internal network
components to address this challenge. This enables the net-
work to autonomously manage and adapt to traffic demands
and communicate requests, achieving transparent TSN. By
identifying various traffic types in real-time, the network can
dynamically allocate resources, reduce the burden on end-
hosts, and minimize messaging frequency to the controller.
Hence, our solution for transparent TSN involves transferring
TSN tasks and network management responsibilities from the
end-hosts and the TSN controller to the network switches.
Empowering switches to manage and identify traffic locally
eliminates the need for end-host TSN-awareness. Further-
more, autonomous traffic type characterization at switches
reduces messaging frequency between the TSN controller and
switches, minimizing network load and reducing latency.

Our approach uses Péﬂ a protocol-independent program-
ming language designed to define custom forwarding be-
haviour and per-packet processing within network devices.

P4 operates in a stateless manner, treating each packet in
isolation without relying on past data. We overcome P4’s
statelessness by leveraging P4 registers — fast-access memory
units that can store data elements in arrays-like structures
for calculations, metadata storage, and counting purposes.
Accordingly, our contributions are:

e Our novel approach eliminates the need for end-host
TSN-awareness. We simplify TSN resource reservation
process and make it more flexible while enhancing com-
patibility with diverse devices.

e We enhance switches with local traffic characterization

capabilities, reducing the need for extensive message
exchange between network components.
Our approach distinguishes between periodic vs. non-
periodic flows with an accuracy of 80%, all while intro-
ducing a mere 0.2 ms per flow. We remove the need to
announce each flow to the controller as typically seen in
conventional networks and substantially enhance overall
network performance in time-sensitive networks.

Utilizing P4, we aggregate inter-arrival times across three
types of traffic (periodic, sporadic, and burst), facilitating
direct extraction of their traffic patterns within the switch. We
demonstrate how the strategic use of P4 registers enables the
application of statistical analysis for per-flow characterization.
Our lightweight solution requires only 0.014MB of switch
memory for flow characterization in time-sensitive networks.
Furthermore, we significantly reduce the message exchange
between network participants compared to traditional stream
reservation protocol (SRP) and SDN networks [2]].

The remainder of this paper is organized as follows. Section
offers background information, while Section describes
related work. In we introduce our system architecture for
transparent TSN. A description of our approach for autocor-
relation computation follows this. We evaluate our solution in
share and describe our experiment results, and discuss our
findings. Finally, section concludes the paper.

II. BACKGROUND

Traffic characterization and monitoring are crucial in time-
sensitive networks. They ensure efficient resource alloca-
tion and deterministic delivery of critical traffic. Various
approaches exist for resource reservation and network configu-
ration: Figure|la|illustrates a distributed approach akin to SRP,
where traffic management responsibilities are decentralized
among network participants. Whereas, in Figure [Ib] an SDN-
like mechanism offers enhanced flexibility and adaptability,
leveraging a holistic network view. Figure outlines a
decentralized approach, where a centralized entity carries out
traffic characterization at the data plane. In the subsequent
sections, we describe the functionalities and implications of
these mechanisms.

Uhttps://opennetworking.org/p4/

A. Standard Stream Reservation Protocol

Standard Ethernet operates on a best-effort basis, often
resulting in unpredictable latency and packet loss during heavy
network traffic load [5]. Ethernet switches forward packets
solely based on their destination MAC addresses without
considering timing or priority requirements. To address this,
the IEEE TSN task group presented SRP to ensure precise
resource allocation, low latency, and deterministic communi-
cation in TSN. As seen in Figure [T the sending end-host
(talker) initiates the communication by sending a reservation
request called Talker Advertise (TA). This message contains
a unique identifier, a stream ID, required resources and QoS
parameters. Every network device evaluates this message along
the reserved stream’s path, assessing whether it can satisfy the
specified requirements to maintain QoS standards. Upon suc-
cessful reservation, the receiving end-host (listener) responds
with a Listener Ready (LR) message, and traffic is forwarded
along the path. However, these negotiations introduce latency
and inefficiencies, specifically in path re-negotiations due to
changing traffic patterns or link/switch failures. Additionally,
managing reservations across large-scale networks with SRP
requires active participation from end-hosts (TSN-awareness).

B. Traffic Characterization at the Control Plane

As illustrated in Fig[Tb| SRP can be enhanced with SDN
by shifting resource reservation tasks and the end-host de-
pendency to the network, specifically to the (TSN) controller.
The TSN controller enables centralized network management
and simplifies the configuration and dynamic provisioning
of reservations tailored to traffic demands [4]. The TSN
controller’s task includes continuously monitoring network
devices, available link capacities, and network traffic patterns.
A talker initiates communication with a reservation request
message to the TSN controller, which contains the Stream ID
and encapsulated QoS parameters. The TSN controller then de-
termines the optimal path for the designated stream, allocates
resources along the reserved path, and (re-)configures the data
plane entities. However, the centralized TSN controller poses
a potential single point of failure. Moreover, as the network
scales up in size and complexity, the management overhead
associated with SDN introduces latency in the reservation
process, impacting the network’s performance.

C. Traffic Characterization at the Data Plane

The forwarding latency between TSN controller and net-
work devices can be reduced with additional components at
the data plane. External components can, e.g. be deployed next
to or into the switches to perform traffic characterization or
processing.

External Monitoring and Extraction: Fig[Id illustrates
traffic monitoring and characterization at the data plane by
deploying external devices. These devices, whether physical
appliances or virtual instances are strategically placed at
crucial network topology points or alongside switches [6] to
perform traffic characterization. However, this also introduces
challenges: Synchronizing all network participants to maintain

https://opennetworking.org/p4/

SDN Controller

SDN Controller

&7

Traffic Extraction

~ SDN4CoRE/
“.NETCONF

NETCONE-"

Stream Request: Talker Announcement (TA)
Resource Reservation: Listener Ready (LR)

<-->Management

(a) Distributed: TSN-aware end-hosts

(b) Centralized: Controller traffic processing

SDN4CoRE/ | @@ .

*

Talker
«-->»Managemen
<> Traffic

Extraction

Listener

(c) Decentralized: External traffic processing

Fig. 1: Resource reservation and network configuration strategies for TSN.

accurate data transmission timing adds complexity and re-
source overhead. External network components also introduce
security vulnerabilities, privacy concerns, and delays when
interacting with other network participants.

Decentralized In-Switch Monitoring and Extraction:
Instead of relying on external components or a centralized
TSN controller, we propose directly integrating traffic charac-
terization and management capabilities within switches. Our
method removes the latency introduced by control-to-data
plane communication in centralized systems, leading to more
efficient and quicker resource allocation. Furthermore, it elim-
inates the need for TSN-aware end-hosts, as enforced by the
SRP, and minimizes the volume of messages typical in SDN-
based networks [2]. By enhancing switches with computing
capabilities to identify traffic types locally, our novel approach
establishes a transparent TSN environment with significantly
fewer message exchanges between network participants.

III. RELATED WORK

This section presents related work on the resource reser-
vation and configuration of time-sensitive networks. SRP
proposed by [5]] and [7]], is essential for deterministic commu-
nication and resource allocation management along communi-
cation paths in TSN. The authors also observed limitations
of TSN, such as the reliance on end hosts to participate
actively in the SRP process. Further challenges of SRP have
been identified by [8]], including consistency problems where
listeners expect streams but resources are not reserved. This
can be particularly challenging in the field of internet of things
(IoT), as investigated in the work of [9]], due to IoT devices’
large scale, heterogeneity, and resource-constrained nature. To
address this issue, Sousa et al. describe modified bridges incor-
porating Media Access Control (MAC) bridge functionalities
based on IEEE 802.1D and 802.1Q protocols. However, the
MAC Bridge Ethernet protocol extension introduces additional
messages for information exchange between switches. Despite
this modification, SRP remained indispensable for resource
management, indicating that end hosts must maintain TSN-
awareness.

Thi et al. [[10] investigated the integration of SDN into TSN
networks and discussed the advantages of a centralized and

programmable network control plane. A holistic network view
allows for a more dynamic and flexible management of net-
work resources. SDN facilitates dynamic resource allocation
based on the real-time requirements of different streams and
traffic type prioritization. However, the necessary interaction
between the TSN Controller and the network devices poses
multiple challenges: The messages between the centralized
controller and network devices increase as the network scales.
This can lead to network congestion and increased latency,
particularly in frequent network changes. Furthermore, config-
uring the TSN controller itself is a complex task, as investi-
gated by [4]. Gutiérrez et al. [11] introduce a self-configuration
framework for real-time networks, leveraging a configura-
tion agent to monitor TSN networks and acquire pertinent
information. During the learning phase, the agent gathers
raw network data from switches. The architecture includes
switches with reconfiguration and learning capabilities and a
master switch that distributes configurations among switches
to minimize downtime during reconfiguration and enhance
network availability and reliability. However, as Gutiérrez et al.
[12] also concluded, exchanging learning messages introduces
additional network overhead, potentially causing congestion
and latency. Additionally, interoperability with various net-
work devices adds complexity to network implementation
and management [|6]. Overall, all discussed approaches have
notable shortcomings. Time-sensitive networks utilizing SRP
bring forth inconsistent resource allocation, scalability issues,
and a require TSN aware end host. Integrating a TSN con-
troller allows for adaptability to network conditions. However,
the communication between SDN controller and network de-
vices increases the network congestion and latency. Lastly, the
discussed decentralized approach for a self-configurable TSN
network requires the deployment of switches with varying
levels of complexity. This also requires interoperability with
various network devices and additional network overhead due
to the amount of communication between network devices.

IV. P4-BASED TRAFFIC EXTRACTION

This section introduces our P4-based packet parameter
extraction approach for traffic characterization per flow. We
describe our approach in further detail in the following section.

SDN Controller

Switch
Configuration
n

Action 1

< "

}_,‘; Action 2

(iV) s Action 3
T
'
'
'
'

B
e
;

v
RO

(O

P4-Configured

Talker Local Traffis Listener

Characterizatio
(i)

» Computed Traffic

Characterization

(..........
<---» Management

Fig. 2: Transparent TSN with local traffic characterization on
edge-switches.

A. Overall System

We follow a decentralized network configuration model, as
illustrated in Fig[2] for a transparent TSN. Utilizing SDN in
TSN, we create a dynamic and adaptive TSN environment that
effectively manages traffic flows.

At the network’s edge, talkers initiate communication
by generating data packets, which encapsulate various pa-
rameters, such as priority levels, timing constraints, and
source/destination address (i). Edge switches disassemble
packets, extract traffic characteristics and determine the traffic
type locally Fig[2] (ii). Any identified changes in traffic type or
other characterization updates can then be relayed to the TSN
controller for further action (iii). Leveraging this information,
the TSN controller evaluates the traffic type changes and fine-
tunes routing decisions (iv). The TSN controller, equipped
with a global network view, can dynamically (re)configure
switches to optimize traffic routing or implement security
measures in response to suspicious network activity (v).

We divide our traffic characterization into two phases:

Learning Phase The switch receives N packets, determines
each packet arrival time and extracts relevant parameters,
such as protocol type and source/destination Internet
protocol (IP). The switch uses these parameters to char-
acterize the baseline traffic type per flow.

Validation Phase After an initial traffic characterization upon
receiving N packets, the switch transitions into the val-
idation phase. The switch verifies the flow traffic type
over time by continuously calculating the traffic type of
the subsequent N packets.

B. P4-based Traffic Analysis

Implementing packet processing and traffic characterization
capabilities in switches usually relies on hardware-based so-
lutions or proprietary software, which can be costly and may
entail vendor lock-ins. Flexibility is needed to program data

Frame Arrival at
Edge-Switch

v
Extract
Frame
(Src,Dst)

Yes “Previously

No
i Yes
-qtsgféc Communicate to
Create/Initialize change SDN Controller

new Register

v
Determine
Frame Arrival

Time

Compute Flow
Traffic Type

Fig. 3: Local traffic characterization on switches in TSN
networks.

plane forwarding behaviour to enhance switches and ensure
efficient packet processing to guarantee low latency in TSN
networks. In this context, P4 emerges as an ideal candidate
for this task. P4, a domain-specific language, is tailored for
programming network data planes, allowing precise behaviour
definitions for devices like switches and routers [[13]]. It grants
flexibility to customize packet processing to meet specific
network demands. While inherently stateless, P4 operates
per-packet and does not retain information or maintain state
between packet processing operations. To overcome this limi-
tation, we use registers, which serve as P4 memory elements
and can store and manipulate packet data across time. We
leverage registers to store intermediate results, metadata and
counter values to perform iterative statistical analysis and
pattern recognition computations. Using read/write operations
on these registers offers a workaround to the absence of, e.g.,
traditional for-loops, complex data structures such as arrays
and recursive function calls in P4 programming.

Fig[3| depicts the flow of characterizing traffic through a P4
configured switch. As soon as a packet arrives at the switch’s
ingress port, the P4 packet processing pipeline is initiated. The
P4 parser extracts relevant fields from the incoming frame to
identify a flow, such as the source and destination IP address.
A new register is created if the flow has not been observed
previously. The current frame’s arrival time is then determined
using the ingress global timestamp metadata. This data is
then utilized to determine packet inter-arrival times and traffic
characterization. The switch proceeds to process the next N
number of packets for traffic characterization and determines
if a change in traffic type occurred.

P4-Register Manipulation and Statistical Analysis: We
utilize multiple registers with different purposes to perform
traffic characterization calculations. Strategic use of these
registers enables us to retain essential information regarding
packet flows and execute calculations for traffic character-

Counter Register

Flow Inter- | Per Flow - .
lteration | Arrival Packet Periodic | Sporadic Burst
- - J
Flow Register Per Flow
Src Dst Prev Inter- Inter- Inter-
Address | Address |Timestamp| Arival | Arival Arrival
Pl Time1 | Time2 Time N
Autocorrelation Register
Auto- Auto- Auto- Auto-
Src Dst
correlation|correlation|correlation correlation
Address | Address 1 Py 3 N-1

Fig. 4: Registers for reading/writing: Inter-arrival times, auto-
correlation results per flow and one main counter register for
iterating and storing counters.

ization within the switch. Our approach utilizes one flow,
one autocorrelation register per flow, and one general counter
register for all flows and traffic characterizations.

a) Flow Register: As shown in FigH] the first two entries
contain the packet’s source and destination addresses to
identify the flow uniquely. The third entry acts as a
temporary buffer, storing the timestamp of the previous
packet processed within this flow. Starting from the
fourth entry, the register exclusively holds calculated
inter-arrival times between successive flow packets.

b) Autocorrelation Register: Utilized for storing the flow’s
autocorrelation values at varying lag intervals.

¢) Counter Register: Designed for tracking various metrics
associated with the flow and facilitating iterative opera-
tions as packets are processed.

Performing traffic characterization locally on a switch en-
tails several challenges. Switches typically lack the processing
power to handle complex calculations and are constrained
by limited memory capacity. Furthermore, packets must be
processed within strict time constraints to avoid network dis-
ruptions. To address this, we choose autocorrelation analysis
to determine traffic patterns over time, as outlined in formula
Autocorrelation quantifies the degree of similarity between
an event and its delayed version across different lag values,
offering a robust means to measure the repetitiveness of traffic
patterns. Compared to complex machine learning methods, it
is computationally efficient and imposes minimal overhead on
switch resources.

N—k - _
Rik) = 2=t @ m D@ =2y en
i (e - 2)?
R(k) : Autocorrelation coefficient at lag k.

N : Total number of frame inter-arrival times.
x¢ > 0 : Inter-arrival time of the ¢-th frame.

Z : Mean inter-arrival time.

k : Lag, inter-arrival times displacement.

After concluding the learning phase and computing the
autocorrelation of N-1 frames, we analyze specific points at
non-adjacent time lags within the autocorrelation register. This

localized assessment is conducted across three distinct ranges
within the register. We discern patterns indicative of periodic,
sporadic, or burst traffic by quantifying the degree of similarity
between autocorrelation values at these selected positions.
Subsequently, the validation phase initiates as we preserve
these outcomes for the next iteration of traffic characterization.
The switch repeats these processes until the registers reach
capacity N to characterize traffic and compare results to the
previously obtained data.

V. EVALUATION

In this section, we employ various metrics and experiments
to evaluate our traffic characterization approach. For that, we
briefly explain the evaluation setup and our use of three traffic
types to assess the precision of our approach. Additionally,
we quantify the forwarding latency introduced by our traffic
characterization enhanced switches compared to switches with
only basic forwarding capabilities.

A. Evaluation Setup

For our experiments, we set up a network in Mininet
2.3. lbeﬂ as it allows the emulation of real-world network con-
ditions and provides a controlled platform for experimentation.
In our virtualized environment, we strategically positioned
three talkers interconnected to a virtual switch, all linked to a
listener. A talker sends a flow of different traffic types: peri-
odic, sporadic, or burst data transmissions. The virtual switch
applies P4 programming tasks, especially ingress processing,
facilitating network analysis, modification, and management.
The listener is the traffic’s destination, receiving and observing
the forwarded traffic.

To compile our P4 program, we used p4c version 1.2.4.3,
which generates target-specific configurations tailored to our
network infrastructure. We utilized the Simple Switch Be-
havior Model version 2 (BMv2), a software-based switch
offering a P4 Runtime interface for dynamic control over
switch behaviour and configuration for testing and debugging
purposes. BMv2 facilitates custom packet processing logic
through its API and provides the Simple Switch CLI, a
command-line interface for interacting with the switch run-
time environment. This CLI enables us to observe runtime
states, debug match-action tables, and monitor register changes
effectively. By seamlessly communicating with the BMv2
runtime environment, the Simple Switch CLI is an intuitive
interface and allows processes to interact with the switch.
To evaluate our approach and effectively simulate real-world
scenarios, we designed multiple scripts in Python 3.8.10 that
generate three types of network traffic in our Mininet topology.
These scripts use the Scapy library to construct and send
TCP packets, allowing control over the generated traffic’s
frequency, intensity and duration. Additionally, we integrated
a counter in the payload to identify packet loss and compute
the switch’s forwarding latency per packet.

We generate the following traffic types to evaluate our
approach:

Zhttps://mininet.org

https://mininet.org

« Periodic: A continuous stream of data packets transmitted
regularly every 30 ms, with a consistent pattern and a ran-
dom jitter between -0.5 and 0.5 ms to each transmission
interval.

o Sporadic: Irregular transmission of packets with unpre-
dictable gaps between packets. We create this type of
traffic by initializing a random number generator seed
and sending TCP packets within uniformly chosen times
ranging from 1 to 100 ms.

o Burst: A series of packets are transmitted in rapid suc-
cession, followed by periods of inactivity. Our script
randomly selects an idle period between 1 and 3 seconds,
e.g., 2.64 seconds, followed by a burst of packets. The
burst duration is between 3 and 8 seconds, and the burst
size is randomly chosen between 10 and 20 packets.

Upon arrival at the switch’s ingress port, incoming traffic

undergoes packet header extraction to identify Ethernet frames
and IPv4 packets for processing. Following packet processing,
the switch executes an IPv4 longest prefix match (LPM) and
forwards the packet to the listener. We initialize registers and
counter in preparation for the subsequent packet arrival times
storage, utilizing the BMv2 simple_switch ingress timestamp.
This timestamp does not use network time protocol (NTP),
providing independence from external NTP servers that could
disrupt the experiment’s timing measurements and introduce
delays through network congestion. We calculate the inter-
arrival times between packets and leverage read/write op-
erations on the counter registers and the inter-arrival regis-
ters per talker until they are fully populated. Our approach,
which involves retaining only a finite number of 500 recent
inter-arrival times, implements a sliding window to conserve
memory. Once the window is filled with inter-arrival times
and corresponding autocorrelations are calculated, the traffic
type is determined, and the registers are flushed for the next
iteration.

070 F ++ v
0.65 F
0.60
0.55 F
0.50
0.45 F
0.40 F

Processing delay [in ms]

0.35 '

0.30 bt i,

Fig. 5: Switch processing delay of our P4 traffic characteriza-
tion (w/) compared to basic forwarding (w/o).

B. Evaluation Metrics

This section evaluates the performance of our approach as
we use multiple metrics and compare our results to a switch
with only basic forwarding capabilities.

1) Classification Accuracy: We set the register size to
accommodate N=500 packets per flow for characterization
purposes. Following this, we generated 200 periodic and non-
periodic traffic flows for each. We subsequently compared
the obtained characterization results to the actual sent traffic
types. As outlined in the confusion matrix [I| and table
our approach accurately identifies periodic and non-periodic
traffic in 80% of the flows. Specifically, all 200 periodic flows
were correctly identified as such by the switch (true positives).
However, the switch incorrectly categorized 51 out of 200 non-
periodic flows as periodic (false negatives). Furthermore, we
determined a packet loss rate of 0%

TABLE I: Confusion matrix for periodic flow vs. non-periodic
flow characterization.

Sent vs. Characterized Periodic Non-Periodic
Periodic (sent) 200 (TP) 0 (FN)
Non-Periodic (sent) 51 (FP) 149 (TN)

We additionally repeated the experiments with the same
traffic types and parameters- only varying the register size N
from 50 to 500 and observed the corresponding changes in
precision. Table [[I| summarizes the precision values obtained
for each register size. As shown, precision values range from
0.7 to 0.8, with the highest precision achieved at a register
size of 500. This indicates that our approach becomes more
accurate in characterizing traffic types as the register size
increases. Additionally, the recall values remained relatively
stable across different register sizes, indicating consistent
performance in correctly identifying periodic and non-periodic
traffic.

TABLE II: Precision and Recall for varying register sizes.

Register Size N 50 100 250 | 500
Precision 0.7 0.67 | 0.73 | 0.8
Recall 0.74 | 0.67 | 0.73 1

2) Performance Measurement: We conducted a perfor-
mance evaluation to assess the forwarding delays our traffic
characterization system incurred on the switch. We first trans-
mit periodic traffic to a virtual switch without traffic character-
ization functionality to establish a baseline. This switch solely
executes basic traffic forwarding to the designated listener.
Subsequently, we captured the traffic at the switch’s ingress
and egress ports and used tshark to match each incoming
pcap packet entry with its corresponding outgoing pcap entry.
For each matched pair, we calculate the forwarding delay
by subtracting the ingress timestamp from the timestamp of
the corresponding egress packet. This computation allows us
to precisely quantify the time it takes for each packet to
traverse the switch and undergo the basic forwarding process.
Using identical traffic parameters (interval, duration and seed),
we direct periodic, sporadic and burst traffic to our virtual

switch equipped with traffic-characterization capabilities and
determine its forwarding delay. Figure [5] compares the for-
warding delay of our traffic-characterization-enhanced switch
and a switch with basic forwarding capabilities — both switches
subjected to identical parameterized traffic types. The mean P4
traffic characterization forwarding delay per packet is 0.147 ms
higher than in the basic forwarding switch. Additionally, our
approach maintains exceptionally low delays, with the mean
forwarding delay for non-periodic traffic at 0.193 milliseconds
per packet. Given the substantial difference in lines of code
and increased complexity of our P4 traffic characterization
compared to basic forwarding, a higher delay is expected in
all three traffic types.

We scrutinized our approach’s RAM consumption in our
evaluation, revealing a total utilization of approximately 0.014
MB. This includes allocations for critical components such
as tables, header instances, and registers. Notably, tables
with their action counter accounted for a significant portion,
consuming 8192 bytes, while header instances required around
100 bytes. Additionally, our solution allocated 3000 bytes
for the flow’s autocorrelation register, 3060 bytes for its
interarrival register, and 768 bytes for the overall counter
register.

In summary, our approach demands a mere 0.014 MB of
memory on the switch and incurs a maximum forwarding
latency of 0.22 ms. These requirements fall well within the
acceptable latency bounds in TSN networks [[6]. Moreover,
our approach introduces less latency compared to conventional
SRP or SDN implementations [2f]. Additionally, it eliminates
the necessity of SDN message exchange, such as Talker
advertise or flow setup requests between network participants.

C. Results

Figure [6] shows the aggregated inter-arrival times for the
three different traffic classes in dependence on the number
of processed packets. The x-axis represents the number of
processed packets, while the y-axis denotes the inter-arrival
times in milliseconds [ms]. Each dot in the figure represents
the difference from the prior packet.

We set the maximum number of processed packets and
register size to 500 for consistency across all traffic types.

Fig. [64] illustrates inter-arrival times in a periodic traffic
scenario. The plot shows a distinct horizontal cluster, indicat-
ing regular packet arrivals within the periodic traffic stream
at consistent intervals. In contrast, Fig. [6b] depicts the P4-
computed inter-arrival times of sporadic traffic, where there
is no discernible pattern or shape; instead, data points across
the entire range. The burst traffic plot in Fig. illustrates
a distinctive distribution of inter-arrival times. Here, most
data points form a dense horizontal line near short inter-
arrival times, representing packets arriving rapidly during burst
periods. The scattered data points at higher inter-arrival times
correspond to intervals between bursts.

Using the inter-arrival times, we computed the autocor-
relation [I] as shown in Figl[7] in dependence on the lag.
In Figl7a] corresponding to the periodic traffic scenario, a

dense concentration of data points is observed around low
autocorrelation values, which underlines the strong correlation
between adjacent inter-arrival times, as expected for periodic
traffic. As the lag increases, the autocorrelation values display
a greater variability, scattering towards higher values.

The autocorrelation plot for sporadic traffic, as depicted in
Fig[7b] presents a more scattered distribution, compared to the
periodic traffic scenario. Despite the sporadic nature of the
traffic, a significant number of packets arrive in relatively
close succession, resulting in short inter-arrival times and,
therefore, many low-lag data points. As the lag increases, the
correlation between distant time intervals decreases, causing
the data points to become more scattered. This illustrates the
irregularity and unpredictability inherent in sporadic traffic.

Our results for the P4-computed autocorrelations of burst
traffic are depicted in Fig. Burst traffic is characterized
by the distinctive clustering pattern along low autocorrelation
values spanning the entire range. As packets are transmitted
rapidly during burst periods, the inter-arrival times are notably
short, resulting in a pronounced autocorrelation at low lag
values. Above the dense horizontal line of closely spaced
inter-arrival times within burst periods, scattered data points
exhibit a slight linear increase pattern as the lag extends. These
data points correspond to inter-arrival times occurring between
burst periods, characterized by a decrease in traffic intensity.
Consequently, longer inter-arrival times are observed during
these intervals.

Our results demonstrate the efficacy of our approach in
enabling the switch to differentiate between various traffic
types. Periodic traffic displays a consistent and predictable
pattern, marked by significant correlations at low lag val-
ues, while scattering gradually increases with higher lags. In
contrast, sporadic traffic exhibits irregular and unpredictable
behaviour, characterized by highly scattered inter-arrival times.
Burst traffic displays a unique pattern with dense clustering of
inter-arrival times during burst periods, followed by scattered
intervals between bursts.

VI. CONCLUSION

This paper presents a novel paradigm: transparent TSN
through local traffic characterization on the data plane. Our
system allows network participants to reap the benefits of
TSN, including deterministic and low-latency communication
with QoS guarantees, without requiring TSN-awareness on the
end-hosts. By shifting traffic analysis and management tasks
from the TSN controller to the control plane, we significantly
reduce communication overhead between network participants,
effectively minimizing latency while ensuring adherence to
QoS policies. We empower resource-constrained network com-
ponents, specifically switches, to perform intelligent packet
processing and statistical analysis autonomously, eliminating
end-host dependencies for reservation requests. Our system
leverages strategic usage of P4 registers to enforce stateful
Ethernet packet processing. This enables precise determination
of inter-arrival times and the calculation of autocorrelations
for traffic type characterization. Performance measurements of

Inter-arrival times [in ms]

Autocorrelation

X% X xxX X X Ex — — 5000 F X X K5 [ex T
o » * Z 1000 z X505 T K
xow £ S X, X S g 4000 X % x’%{‘»{ XX]
60—»«%& K B SPK R X MHN | = 800 = XX x T N
X 19 o X XX)&%X}?«
55¢] £ £ 3000 s " X X TXRET
=600 = R P XK e
50t] £ £ 2000F * X X x
IS SRS E 400 5
<
3 1 X OORCORORIONS N | 5 5 1000}]
401] S 200 4 3 =
0 200 400 600 800 1000 0 200 400 600 800 1000 070" 200 400 600 800 1000
Packet No. Packet No. Packet No.
(a) periodic (b) sporadic (c) burst
Fig. 6: Inter-arrival times of three traffic types calculated by our P4-configured switch.
x10! x10'!
383,« X
25 2.5F Xoxx X XX
= =] x X X
£ 20 S 20 X &K% b SRS
= = o XX X X X
E s BISE SRR 3
S S % W X Xy
% 1.0 g 1.0F % X X)22(X
< z % X X x
. 0.5F X
0:5 & x X >S$< ﬁﬁ
1 1 1 1 0.0 ! i I 0.0¢
0 200 400 600 800 0 200 400 600 800 0 200 400 600 800
Lag Lag Lag
(a) periodic (b) sporadic (c) burst

Fig. 7: Autocorrelation of three traffic types calculated by our P4-configured switch.

our enhanced switch show a forwarding latency of 0.2 ms per
periodic packet and an 80% precision rate for our approach.
We eliminate the need for message exchanges between end-
hosts and TSN controller, significantly reducing network load.

Futu

re work involves testing our implementation on hardware

to assess its impact and performance in real-world scenarios.
Additionally, further research could focus on comparing the
performance and impact of our local traffic characterization in
TSN networks to traditional TSN traffic management strate-

gies.

[1]

[2]

[3]

[4]

REFERENCES

M. Seliem and D. Pesch, “Software-Defined Time Sensitive Networks
(SD-TSN) for Industrial Automation,” in /4th International Conference
on Computational Intelligence and Communication Networks (CICN),
2022, pp. 1-7.

T. Hackel, P. Meyer, F. Korf, and T. C. Schmidt, “Software-Defined
Networks Supporting Time-Sensitive In-Vehicular Communication,” in
IEEE 89th Vehicular Technology Conference (VIC2019-Spring), 2019,
pp. 1-5.

G. N. Kumar, K. Katsalis, and P. Papadimitriou, “Coupling Source Rout-
ing with Time-Sensitive Networking,” in IFIP Networking Conference
(Networking), 2020, pp. 797-802.

H. Chahed and A. J. Kassler, “Software-Defined Time Sensitive Net-
works Configuration and Management,” in /[EEE Conference on Network
Function Virtualization and Software Defined Networks (NFV-SDN),
2021, pp. 124-128.

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

I. T. Group, “IEEE Draft Standard for Local and metropolitan area
networks—Media Access Control (MAC) Bridges and Virtual Bridged

Local Area Networks Amendment: Stream Reservation Protocol (SRP)
Enhancements and Performance Improvements,” IEEE P802.1Qcc/D2.1,

pp- 1-236, 2018.

N. Sertbag Biilbiil, D. Ergeng, and M. Fischer, “SDN-based Self-
Configuration for Time-Sensitive IoT Networks,” in 2021 IEEE 46th
Conference on Local Computer Networks (LCN), 2021, pp. 73-80.

S. Nam, H. Kim, and S.-G. Min, “Simplified Stream Reservation
Protocol Over Software-Defined Networks for In-Vehicle Time-Sensitive
Networking,” IEEE Access, vol. 9, pp. 84700-84 711, 2021.

D. Bujosa, 1. Alvarez, and J. Proenza, “CSRP: An Enhanced Protocol for
Consistent Reservation of Resources in AVB/TSN,” IEEE Transactions
on Industrial Informatics, vol. 17, no. 5, pp. 3640-3650, 2021.

R. Sousa, P. Pedreiras, and P. Gongalves, “Enabling IIoT IP backbones
with real-time guarantees,” in [EEE 20th Conference on Emerging
Technologies and Factory Automation (ETFA), 2015, pp. 1-6.

M.-T. Thi, S. Ben Hadj Said, and M. Boc, “SDN-Based Management
Solution for Time Synchronization in TSN Networks,” in 25th IEEE
International Conference on Emerging Technologies and Factory Au-
tomation (ETFA), vol. 1, 2020, pp. 361-368.

M. Gutiérrez, A. Ademaj, W. Steiner, R. Dobrin, and S. Punnekkat,
“Self-configuration of IEEE 802.1 TSN networks,” in 22nd IEEE Inter-
national Conference on Emerging Technologies and Factory Automation
(ETFA), 2017, pp. 1-8.

M. Gutiérrez, W. Steiner, R. Dobrin, and S. Punnekkat, “A configuration
agent based on the time-triggered paradigm for real-time networks,” in
IEEE World Conference on Factory Communication Systems (WFCS),
2015, pp. 1-4.

P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87-95, 2014.

	Introduction
	Background
	Standard Stream Reservation Protocol
	Traffic Characterization at the Control Plane
	Traffic Characterization at the Data Plane

	Related work
	P4-based Traffic Extraction
	Overall System
	P4-based Traffic Analysis

	Evaluation
	Evaluation Setup
	Evaluation Metrics
	Classification Accuracy
	Performance Measurement

	Results

	Conclusion
	References

