
Faking deduplication to prevent timing side-channel attacks on memory
deduplication

Jens Lindemann
Department of Informatics

University of Hamburg, Germany
jens.lindemann@uni-hamburg.de

Abstract—Content-based memory deduplication offers poten-
tial for saving physical memory by merging identical virtual
pages. However, it also opens up a timing side-channel that
allows attackers to probe whether an identical copy of one of
their pages exists elsewhere on the system. This allows, for
example, to find out what exact version of an application is
being executed in another VM, and can also facilitate other
side-channel attacks, e. g. some Rowhammer-based attacks.
This paper presents FakeDD, a modification to Linux KSM,
which uses fake deduplication as a countermeasure against
such attacks that equalises the write times to duplicate and
unique pages. Nevertheless, it still allows to make use of the
memory savings offered by deduplication. FakeDD is available
as open-source. It is evaluated with regard to its effectiveness
and performance overhead. The results indicate that it can
effectively prevent side-channel attacks based on the write time
differences between duplicate and unique pages and that the
additional performance overhead is smaller than that already
incurred due to the standard KSM implementation and may
thus be an acceptable trade-off for the additional security.

1. Introduction

Sharing computing resources between different services
and users allows for an efficient use of these resources. For
example, there is no need to run dedicated server hardware
to host a small website. Instead, it can be placed on a
server that also hosts websites or even other server software
for other users. In this scenario, the server operator will
normally want to make sure that each user’s domain is
isolated from other users’ domains, i. e. they should not be
able to interfere with or gain information about activities
or data of other users. Isolated domains can be realised by
different means, e. g. containers or virtual machines (VMs).

Despite these efforts at isolation, resource sharing does,
however, increase the risk of successful attacks. A malicious
user may be able to breach the isolation and interfere with
the domain of another user on the same host. On the one
hand, components such as the host operating system or
hypervisor may be vulnerable. On the other hand, side-
channel attacks could be used to deduce information about
other, supposedly isolated, domains.

Introducing additional mechanisms aimed at optimising
the resource utilisation can further increase the risk of
side-channel attacks between isolated domains on a host.
One such mechanism is memory deduplication, which aims
to save physical memory by referencing identical virtual
memory pages to a single physical memory page. There
are various implementations of memory deduplication, one
of them being Linux kernel same-page merging (KSM). It
regularly scans for such pages and deduplicates them across
the boundaries of VMs. This gives rise to a side-channel, as
in KSM and similar content-based implementations write
operations to a deduplicated page take longer than to a
non-deduplicated page due to a copy-on-write operation
being performed. This allows an attacker to infer whether a
memory page is present within another VM on a host [1].

The main contribution of this paper is FakeDD, a modi-
fied implementation of Linux KSM that eliminates the write
timing side-channel caused by memory deduplication by
means of fake deduplication. This is achieved by copying
a page that is being written to not only if it is actually
deduplicated, but also if it is unique, but would be eligible
for deduplication if there was a second, identical virtual
page in memory. FakeDD is provided as an open-source
patch to the Linux kernel’s implementation of KSM on
GitHub1. Its effectiveness in eliminating the side-channel
and its retention of memory savings potential are evaluated,
as is its influence on performance compared to a stock
kernel with and without KSM as well as VUsion [2], which
similarly aims to eliminate side-channels, albeit using the
even more aggressive technique of copy-on-access.

The remainder of this paper is structured as follows:
Section 2 discusses background and related work. Sec-
tion 3 discusses the attacker model underpinning the defence
mechanism. The standard KSM implementation is compared
to the modified implementation in Section 4. In Section 5,
FakeDD is evaluated with regards to its effectiveness and
performance, before Section 6 concludes the paper and gives
an outlook on future work.

1. https://github.com/jl3/FakeDD

2. Background and related work

In this section, background information is explained
and related work discussed. Section 2.1 first introduces
the concept of memory deduplication. Section 2.2 explains
side-channel attacks based on memory deduplication, before
Section 2.3 discusses countermeasures against such attacks.

2.1. Memory deduplication

Memory deduplication is implemented in many operat-
ing systems and hypervisors to save physical memory. An
operating system organises a computer’s memory as a set
of memory pages M, with the typical size of a normal
(non-huge) page pi ∈ M being 4 KiB. Consequently, a page
resident in physical memory will consume 4 KiB without de-
duplication. Memory deduplication tries to identify sets Di

of multiple identical pages where ∀pj , pk ∈ Di : (pj , pk ∈
M)∧ (pj = pk). It then removes all but one page pm ∈ Di

from physical memory and updates the memory mappings
of all other pages ∀pj ∈ M : (pj = pm) ∧ (j ̸= m) to
point to pm instead. Subsequently, when a page pi ∈ Di is
to be changed, a copy-on-write operation is triggered, i. e.
the page is copied to a new physical page. This allows it to
be modified without affecting the other copies of the page.

In most implementations, the identification of sets of
identical pages is implemented by regularly scanning the
memory for such pages. While this consumes computing
resources, it ensures that identical pages are found even if
they were loaded from different sources and/or only became
identical during the run-time of an application. Alternatively,
it is, however, also possible to identify identical pages when
originally mapping the pages into virtual memory based
on where they were loaded from, i. e. if the same page
gets mapped from the same file twice, these pages will be
identical and can thus be deduplicated, unless they are later
written to. A similar concept underlies the shared memory
mappings that operating systems create when shared lib-
raries are used by multiple applications: Where pages are
loaded from an identical file location and do not need to
be adapted to individual applications, only one physical
memory page is used.

In Linux, the Kernel Same-page Merging (KSM) mech-
anism is used for deduplication [3], which is described in
more detail in Sect. 4.1. Its main purpose is to deduplic-
ate the memory of VMs created through the Kernel-based
Virtual Machine (KVM) hypervisor, which does not have a
separate deduplication mechanism.

VMWare uses its own deduplication mechanism [4],
which the author refers to as ‘content-based’ because it tries
to identify candidates for deduplication based on their con-
tents by regularly scanning the memory for identical pages
– just as KSM does. However, current versions of VMWare
only deduplicate identical pages within the memory of a
VM by default [5], i. e. no pages are deduplicated across
the boundaries of VMs. Unless this setting is changed, this
implies that cross-VM side-channel attacks based on the

write time differences induced by memory deduplication are
not possible, but also that memory savings are reduced.

Xen includes supports for memory deduplication under
the denomination of ‘memory sharing’. As of release 4.18,
this is still under experimental status [6], despite the code
file implementing it originally stemming from 2009 [7].
The Xen hypervisor no longer comes with any functionality
to identify pages that should be deduplicated, though: The
originally included memshr library, which served to dedu-
plicate pages at load-time when pages are loaded multiple
times from the same disk image [8], was removed in 2020
[9]. Difference Engine [10] is a proposal to add a content-
based scanning mechanism for the identification of identical
pages. In addition to completely identical pages, it aims
to also deduplicate partly-identical pages by only storing
information about the differences of a page to a similar page
that is stored in physical memory.

2.2. Side-channel attacks based on memory dedu-
plication

A problem with memory deduplication is that when a
deduplicated virtual page is modified, the changes can no
longer be written directly to physical memory, as this would
also affect all other virtual pages mapped to the physical
page. Deduplicated pages are therefore marked copy-on-
write. This implies that when one of the virtual pages is
to be modified, the contents of the page are first copied to
a new physical page. Only afterwards are the modifications
written to the copied page.

The copying process takes time to complete, which
prolongs the write operation for deduplicated pages. On the
one hand, this can affect application performance, which can
be an acceptable trade-off for the memory savings achieved.

On the other hand, however, this gives rise to side-
channel attacks that can break the isolation between the
domains of different users, e. g. separate virtual machines.
As modifying a deduplicated page takes longer than modify-
ing a non-deduplicated page, an attacker can probe whether
one of their pages was deduplicated [1]. While this does
not allow an attacker to read data from the memory of
other users, it allows an attacker to check whether a page
containing specific data is present elsewhere on the host. To
do this, they need to fill a page with the data that they wish to
probe for, as well as wait for the deduplication mechanism
to find any potential duplicate pages and deduplicate the
pages. Afterwards, they can measure the time it takes to
modify the page: If this takes relatively long, this indicates
that an identical page is present on the host. Otherwise,
this indicates that their page was unique, i. e. there is no
identical page elsewhere on the host. Note, however, that
such attacks only work at the granularity at which deduplic-
ation is performed, i. e. on full pages for KSM and other
common implementations of content-based deduplication.
Thus, attackers cannot directly probe for the presence of
small amounts of data, such as a password, without also
knowing (or brute-forcing) the rest of the page.

This side-channel can be used for various purposes and
can reveal confidential information from the domain of a
user. Suzaki et al. [1] were the first to describe an attack that
exploits the write time differences between deduplicated and
non-deduplicated pages caused by KSM. Their attack uses it
to detect applications running in a co-resident VM. Owens
and Wang [11] demonstrate an attack that can detect which
operating system is being executed within a co-resident VM
on a VMWare ESXI host. Lindemann and Fischer [12], [13]
demonstrate that it is possible to create signatures that can
be used to efficiently detect the exact version of applications
executed in co-resident VMs down to the patch level.

Instead of trying to detect executed applications, other
attacks target the address space layout randomisation
(ASLR) techniques of operating systems. Barresi et al. [14]
demonstrate an attack that can reveal the randomised base
address of applications executed in co-resident Windows and
Linux VMs. Bosman et al. [15] demonstrate a JavaScript-
based attack on Windows 8.1 and 10 end-user operating
systems exploiting memory deduplication through the Mi-
crosoft Edge browser. Their attack can reveal the randomised
address of the browser’s heap and code pointers. Combined
with a Rowhammer attack [16], the attack manages to read
arbitrary data from the memory of the victim computer.

Memory deduplication can also be used to establish
a covert channel through which two co-resident virtual
machines can communicate, as shown by Xiao et al. [17].
Additionally, they show that memory deduplication can be
used to monitor the integrity of a VM’s kernel from the
outside.

Furthermore, there are side-channel attacks that are not
based on the write time differences between deduplicated
and non-deduplicated pages, but that nevertheless rely on
memory deduplication or that are at least facilitated by it.
For example, Irazoqui et al. [18] describe an attack that
can detect what version of a cryptographic library is being
used in a co-resident VM through a Flush+Reload attack.
It measures the reload time of functions characteristic to
the library (version). The attacker flushes the cache and
later tries to reload the function: Reloading will be faster
if another VM used the function in the meantime. The
attack requires the memory page with the targeted function
to be deduplicated between the VMs of the attacker and the
victim.

If an attacker wanted to perform a targeted attack on
a specific VM, this would require them to achieve co-
residence with that VM. Research indicates that this is
realistic even in large public cloud environments [19], [20].
While this effect has diminished significantly [20], it used to
be possible to achieve co-residence with a VM in Amazon
EC2 by launching VMs close to the launch time of a target
VM [21].

Concerns of data leaking between VMs has lead to the
feature being disabled in some environments at the cost of
not being able to make use of its memory savings potential.
For example, VMWare disabled deduplication between dif-
ferent VMs in the default configuration [5]. Google does not
use KSM with their KVM VMs [22]. Amazon also stated

to Irazoqui et al. [23, pp. 14–15] that their public cloud
products do not use deduplication.

2.3. Countermeasures against memory deduplica-
tion side-channel attacks

Different countermeasures against side-channel attacks
exploiting the timing differences caused by memory dedu-
plication have been proposed. As described in the previ-
ous subsection, concerns about data leaks have lead some
vendors to disable memory deduplication. While this is
indeed an effective and simple countermeasure, it also elim-
inates all potential benefits of deduplication in form of
memory savings.

The proposal most closely related to that presented in
this paper is VUsion [2], which also aims to eliminate side-
channel attacks by modifying the handling of deduplicated
pages. The most important difference is that VUsion em-
ploys copy-on-access instead of copy-on-write. This has the
advantage of also countering attacks that rely on pages being
deduplicated, but that can be triggered by read operations,
such as some variants of the Rowhammer attack, e. g. the
one described by Bosman et al. [15]. This does, however,
come at the cost of also disturbing read operations: Pages
not only have to be copied when written to, but also when
read from. Also, note that this does not eliminate all Row-
hammer attacks, as deduplication merely facilitates such
attacks – the original Rowhammer attack [16] does not rely
on pages being deduplicated. Furthermore, this can prevent
what Oliverio et al. [2] refer to as a ‘page sharing’ attack, in
which an attacker can detect page sharing changes through
a cache-based side-channel attack. This attack assumes that
the victim can be triggered to access a page, i. e. it requires
some level of control over the VM owning the (suspected)
second instance of a page.

A further difference is that VUsion also copies the
contents of a page to a new physical page when it is
deduplicated and/or marked as copy-on-access. On the one
hand, this counters the Flip Feng Shui attack [24], which
is based on Rowhammer. On the other hand, this also
ensures that pages being marked copy-on-access will have a
chance of being assigned a different page colour, irrespective
of whether they are actually being deduplicated. This can
prevent what Oliverio et al. [2] refer to as a ‘page colouring’
attack, through which an attacker can determine via a cache-
based side-channel attack whether a page has been moved,
which would indicate it having been deduplicated. Note,
however, that such an attack is relatively complex, especially
if an attacker wants to probe for the existence of many pages,
as would be the case if they were trying to determine which
version of an application is present [12]: An attacker would
have to first find eviction sets for all page colours, identify
the colour of all pages and then monitor for changes of the
colour of all pages by separate Prime+Probe attacks.

Finally, VUsion employs a more complex algorithm to
determine whether a page is stable enough to be considered
for deduplication or being marked as copy-on-write (‘work-
ing set evaluation’). While KSM and FakeDD only require

pages to remain unchanged between two scans, VUsion aims
to also determine whether the pages have been accessed
at all. This serves to avoid excessive page faults on read
operations, but is more restrictive in terms of pages that can
be deduplicated.

Instead of eliminating the side-channel itself, proposals
from the field of co-location resistant VM placement could
also help to prevent side-channel attacks. This field explores
how to assign newly created VMs to hosts in a way that
reduces the likelihood of attacks between VMs on the same
host by reducing the chance of a benign user’s VM being
placed on the same host as a VM of an attacker. Many dif-
ferent placement strategies aimed at increasing co-location
resistance have been proposed. They base their placement
decisions on various parameters, such as choosing hosts
where at least one user already present has been encountered
before [25], the proportion of users on a host that were
previously encountered [26] or only placing VMs of a single
user on a host [27].

Finally, another approach at thwarting side-channel at-
tacks could be detecting them. One proposal to this end is
HexPADS [28]. It aims to detect the CAIN attack by Barresi
et al. [14] by means of monitoring the number of page faults
and cache misses. Similarly, Paundu et al. [29] try to detect
cache-based side-channel attacks by analysing KVM events
gathered using the ftrace tool.

3. Attacker model

The attacker is assumed to be in control of a VM on
the same host as the victim. The host is assumed to be
using a content-based memory deduplication mechanism,
i. e. one that regularly scans the memory of all guest VMs for
identical memory pages and deduplicate these, e. g. Linux
KSM. In particular, it is assumed to also deduplicate pages
that belong to different VMs owned by different users. The
attacker is assumed to be able to write arbitrary memory
pages to the memory of their own VM, overwrite these
pages later and perform an accurate measurement of the
time it takes to complete a memory write within the VM.
They do not, however, have control over anything else than
their own VM, i. e. they cannot perform any actions within
the host OS or the victim VM. The attacker’s goal is to
determine whether a memory page with specific contents
exists in another VM on the host, i. e. whether all 4 096 bytes
in the page match their ‘guess’. Their memory resources
are assumed to be restricted by their VM, i. e. they can
only load a limited number of pages at a time. We do not
assume the attacker to be limited in terms of time, however:
Both the attack as well as the victim VM are assumed to
remain on the host indefinitely. This effectively makes the
memory restriction irrelevant even for attackers wanting to
probe for the presence of many different pages. Similarly,
the attacker’s computational resources will also be bound
by their VM, but this is irrelevant, as the attack neither
consumes a lot of processing power nor is it relevant how
long the attack takes.

4. Modifying Linux KSM

FakeDD was implemented as a modification to the
content-based memory deduplication mechanism of the
Linux kernel, KSM. It is available as an open-source patch
to the Linux kernel on GitHub2 alongside some of the tools
used for evaluation. To explain how FakeDD works, this
section first explains the standard KSM implementation in
Section 4.1, before describing the modifications made for
FakeDD in Section 4.2.

4.1. Implementation details of standard KSM

Linux kernel same-page merging (KSM) is the content-
based memory deduplication mechanism of the Linux ker-
nel. It operates on pages specifically marked as mergeable
(MADV_MERGEABLE) by calling the madvise function
[30]. The kernel automatically does this for the memory
of VMs created through KVM. Theoretically, other applic-
ations could also make use of memory dedupication by
marking their memory as mergeable, but desktop applica-
tions do not normally do this [31]. If an application running
on the host operating system were to mark its pages as
mergeable, this would imply that these pages would also be
deduplicated with pages of VMs. Thus, attackers could also
probe for the existence of these pages within a VM, unless
countermeasures were deployed. All mergeable pages on a
host are regularly scanned by KSM. If identical pages are
found, they are deduplicated.

Figure 1 gives an overview of the standard KSM scan-
ning procedure. After initialising the stable and unstable
trees, KSM starts a scanning loop. This scans all pages in
the physical memory that are marked as mergeable and are
not already in one of the trees.

For each of these pages, it first checks whether the
page is already in the stable tree, which is a red-black tree
containing information about all pages currently marked as
copy-on-write by KSM, i. e. pages which have previously
been deduplicated. Note, however, that this does not imply
that they will necessarily still be deduplicated – if just one
unmodified copy of a deduplicated page remains in memory,
it will stay marked as copy-on-write until modified. If a copy
of the page is found in the stable tree, the scanned page is
merged with this.

If the page is not in the stable tree, KSM checks whether
it has changed since it was last scanned by comparing its
checksum to the value stored for the page. If this is not the
case, it updates the stored checksum and ignores the page
for this pass. Otherwise, it searches the unstable tree for an
identical page. The unstable tree is another red-black tree
and contains all pages that have been scanned so far during
a memory pass. If a duplicate is found on the unstable tree,
it is removed from it, the two pages are merged and inserted
into the stable tree. If there is no identical page, the scanned
page is added to the unstable tree, which concludes the scan
of the page.

2. https://github.com/jl3/FakeDD

Initialise stable and
unstable tree

Identify page to be
scanned

Search stable tree

Match found in
stable tree?

[Yes]

Merge pages

Last page for
this interval?

Sleep sleep_milliseconds

Last page for
this pass?

[No]

Clear unstable tree

[Yes]

[No]

[No]

Calculate checksum of
scanned page

Checksum equal
to last pass?

Update checksum

Search unstable tree

[Yes]

Match found in
unstable tree?

Merge pages

Remove page from
unstable tree

Insert shared KSM page
in stable tree

Insert page in
unstable tree

[No]

[Yes]

[No]

[Yes]

Figure 1: Overview of the standard KSM scanning procedure
(based on flowchart describing the original KSM scanner by
Arcangeli et al. [3, Fig. 4], modified to show sleep interval
introduced in later kernel versions)

After scanning a page, KSM proceeds to scan the next
page unless the KSM configuration requires it to pause
before doing so. KSM allows to configure the number
of pages to scan in a time interval by writing it to the
pseudo-file /sys/kernel/mm/ksm/pages_to_scan.
Likewise, the length of the interval can also be configured by
writing to the pseudo-file sleep_millisecs. After KSM
has scanned pages_to_scan pages back to back, it will
pause sleep_millisecs milliseconds before scanning
the next batch of pages. Once all mergeable pages have been
scanned in a pass, KSM clears the unstable tree and begins
another pass of the memory, i. e. it scans all mergeable pages
again.

4.2. Implementation of FakeDD in KSM

The implementation of FakeDD is based on Linux KSM.
An overview of the modified KSM implementation is shown
in Figure 2. The FakeDD version of KSM no longer uses
the unstable tree. As pages are no longer inserted into the
unstable tree, the unstable tree also no longer needs to be
searched for a page matching the currently scanned page.

Where a page would be merged with a page in the
unstable tree or alternatively added to the unstable tree in
the standard KSM implementation, it is now instead marked
as copy-on-write on its own and directly added to the stable

[No]

Calculate checksum of
scanned page

Checksum equal
to last pass?

Update checksum

[Yes]

[No]

Mark page as
copy-on-write

Insert shared KSM page
in stable tree

Insert KSM page in
stable tree

Initialise stable tree

Identify page to be
scanned

Search stable tree

Match found in
stable tree?

[Yes]

Merge pages

Last page for
this interval?

Sleep sleep_milliseconds

Last page for
this pass?

[No]

[Yes]

[No]

[Yes]

Figure 2: Overview of the FakeDD KSM implementation

tree. This implies that a page is not immediately marked
copy-on-write on being mapped or modified. Instead, this
only happens when it would normally become eligible for
deduplication, i. e. only after it has been passed twice by
the scanner and has not been modified since its last scan.
Furthermore, like in the standard KSM implementation, the
page must be marked as mergeable. Once these prerequisites
are met, the page is marked as copy-on-write irrespective
of whether another identical page exists in the computer’s
memory.

Note that the modified KSM implementation leaves a
residual side-channel open: An attacker can probe whether
deduplication is active on a host. This is no longer possible
by writing a unique page and a pair of identical pages to
the memory of their VM and comparing the time it takes to
write to these. However, an attacker can still see a difference
in write times between a page that has been in memory for
a long time and a page that has just been written to memory
(and thus has not been scanned twice yet). Furthermore, an
attacker can determine the speed of deduplication, i. e. how
long it takes for a newly written page to be marked copy-on-
write after having been scanned twice. This information is
of little value to an attacker, though: There is no difference
in write times between unique pages and pages of which an
identical copy exists elsewhere on the host.

5. Evaluation

To ensure that FakeDD is useful, it is not only important
that it can prevent the side-channel attack and that it is
still able to deduplicate pages to save memory, but also

that any impact it may have on performance is acceptable.
To evaluate whether this is the case, Section 5.1 will first
analyse the effectiveness of FakeDD in preventing side-
channel attacks based on write time differences caused by
KSM. Section 5.2 then evaluates the effect of FakeDD on
memory savings. The impact on application performance is
evaluated in Section 5.3. Finally, Section 5.4 investigates the
resource usage of the deduplication mechanism itself.

All evaluations were run on Linux kernel 4.10-rc6 to
allow for a comparison with VUsion, which is based on
this kernel version and could not trivially be ported to a
newer kernel version. Ubuntu 16.04 was used to minimise
compatibility issues, as this distribution was originally run-
ning kernel 4.4 and was later updated to the 4.15 series,
i. e. the required kernel version is within the range of ver-
sions used by this distribution release. All experiments were
performed on kernels self-compiled based on the kernel
sources obtained from the Linux kernel Git repository. The
default compile options from Ubuntu kernel version 4.15.0-
142 were used to create kernel image packages based on the
source code of 4.10-rc6, patched with FakeDD or VUsion
support, where applicable. Apart from applying the patches,
no further changes were made to the kernel. Measurements
using a newer 5.10 kernel on Debian 11 returned similar
results with regard to the comparison between standard
KSM and FakeDD. Therefore, results are only shown for
kernel 4.10-rc6 for sake of brevity.

Except for changes noted in the description of the in-
dividual experiments, the default configuration of the dedu-
plication mechanisms was used. Experiments were run on
a computer equipped with an Intel Core i7-4790 quad-core
CPU and 16 GiB of physical DDR3-1600 memory.

5.1. Effectiveness

This section aims at evaluating whether FakeDD is ef-
fective against memory deduplication side-channel attacks.
This would be the case if an attacker could not observe
any timing differences between writes to deduplicated and
non-deduplicated pages.

To evaluate whether this is the case, Linux was booted
with the different kernels prepared for evaluation to compare
their behaviour with regard to the write times to deduplic-
ated and non-deduplicated pages. KSM was enabled and set
to scan 500 pages every 10 milliseconds. Two VMs were
started on the host to serve as a victim and an attacker
VM. The attacker VM was allocated 1.5 GiB of memory
and running Debian 11, while the victim VM was allocated
1 GiB of memory and running Debian 10. In the victim
VM, a randomly generated set of 50 pages was loaded.
In the attacker VM, the same set of pages was loaded in
addition to another identically sized randomly generated set
of pages. Using relatively large sets of 50 pages ensures
that write times to deduplicated and non-deduplicated sets of
pages should be clearly distinguishable in scenarios where a
side-channel is present. After waiting for 120 seconds, the
sets of pages in the attacker VM were overwritten, while
measuring the time this took. The wait time was chosen

so that KSM could scan the full memory of the VMs more
than twice, i. e. it should always be able to identify potential
duplicates before the pages are overwritten. For this purpose,
a single write operation was performed per set of pages.
No background activity was running on either the host or
within the VMs apart from the basic operating system setup
to ensure that any noise in the measurements caused by
background activity is kept to a minimum. This process
was performed 2 500 times each for sets of pages matching
between the VMs and sets of pages unique to the attacker
VM.

Figure 3 shows histograms of the observed write times
to the sets of 50 deduplicated and non-deduplicated pages
within the attacker VM for the different kernels. Figure 3a
shows the histograms for a standard kernel with deactivated
KSM. As expected due to deduplication being deactivated, it
can be seen that the timing distributions are very similar to
each other, with the distributions peaking around 16 ms. This
indicates that an attacker would be unable to tell whether
pages are also present in another VM.

Figure 3b shows the histograms for a standard kernel
with activated KSM. Here, the distribution for the write
times to sets of pages that were loaded in both VMs is quite
different to that for sets of pages unique to the attacker VM.
While the distribution for unique pages is almost identical to
the experiment without deduplication, write operations tend
to take longer for pages present in both VMs, with the dis-
tribution peaking at about 170 µs. While both distributions
contain outliers for which write operations took longer than
is typical, there is no overlap between the distributions. This
indicates that an attacker would be able to tell whether pages
are also present in another VM.

The histograms for FakeDD are shown in Figure 3c.
On the one hand, it can be seen that the distributions are
now once more very similar to each other, indicating that
an attacker would not be able to tell whether a page is also
present in another VM despite deduplication taking place.
On the other hand, the write operations take longer than for
the standard kernel without KSM: Write times to unique
pages are now as long as write times to deduplicated pages
for the standard kernel with KSM. Both distributions are
almost identical to that for duplicate pages using standard
KSM, having their peak at about 170 µs. Therefore, while
it cannot hide that a deduplication mechanism is active due
to its longer write times, FakeDD is effective against timing
side-channel attacks aimed at determining whether a page
with specific contents is present on a host.

Finally, the histograms for the VUsion kernel are shown
in Figure 3d. Again, both distributions are almost identical
to each other, indicating that an attacker would be unable to
tell the difference between the two types of pages, i. e. that
VUsion is equally effective at preventing an attacker from
finding out whether an identical copy of a page is present in
another VM. However, the distributions are different from
that for duplicate pages using standard KSM and those for
FakeDD. The peak is higher at around 200 µs, indicating
that the handling of a copy-on-write page fault takes longer.
Furthermore, the distributions not only contain outliers with

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0 50 100 150 200 250 300 350 400

nu
m

be
r

of
 m

ea
su

re
m

en
ts

write time (µs)

unique

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0 50 100 150 200 250 300 350 400

nu
m

be
r

of
 m

ea
su

re
m

en
ts

write time (µs)

duplicate

(a) Standard kernel, no deduplication

 0
 50

 100
 150
 200
 250
 300
 350

 0 50 100 150 200 250 300 350 400

nu
m

be
r

of
 m

ea
su

re
m

en
ts

write time (µs)

unique

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 50 100 150 200 250 300 350 400

nu
m

be
r

of
 m

ea
su

re
m

en
ts

write time (µs)

duplicate

(b) Standard KSM

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300 350 400

nu
m

be
r

of
 m

ea
su

re
m

en
ts

write time (µs)

unique

 0
 5

 10
 15
 20
 25
 30
 35

 0 50 100 150 200 250 300 350 400

nu
m

be
r

of
 m

ea
su

re
m

en
ts

write time (µs)

duplicate

(c) FakeDD

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 50 100 150 200 250 300 350 400

nu
m

be
r

of
 m

ea
su

re
m

en
ts

write time (µs)

unique

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 50 100 150 200 250 300 350 400

nu
m

be
r

of
 m

ea
su

re
m

en
ts

write time (µs)

duplicate

(d) VUsion

Figure 3: Histograms of the write time to sets of 50 duplicate or unique pages for the different deduplication mechanisms

longer write times, which are present in all distributions,
but also ones with write times significantly shorter than
the peak. These can likely be attributed to the working set
estimation mechanism preventing some pages from being
marked copy-on-access.

5.2. Deduplication performance

A change in the deduplication mechanism may change
its ability to identify and deduplicate identical memory
pages. On the one hand, this may have an impact on the
total amount of memory that can be saved, e. g. due to
pages becoming ineligible for deduplication. On the other

hand, the time it takes to realise the potential savings after
identical pages have been placed in memory could change,
e. g. due to the deduplication mechanism taking longer to
find duplicate pages.

To evaluate what impact FakeDD has on the deduplica-
tion performance, the memory savings in a test environment
were monitored over time for both the stock and patched
KSM implementations. To this end, four VMs were set up.
Two VMs were running Debian 11. One VM was running
Debian 12, i. e. software that was relatively similar, but
newer. The last VM was running FreeBSD 14.0, i. e. a com-
pletely different operating system. Each VM was allocated
two CPU cores and 2 GiB of memory. For all VMs, a

default installation of the respective operating system was
performed. The software used in the VMs ensures that there
was a large number of pages eligible for deduplication, of
which some were actually duplicates, while others were
unique to a VM. After booting and logging into each VM, a
snapshot was created, so that the identical system state could
be restored for experiments with the different deduplication
types.

To launch an experiment, the snapshots were restored,
with the VMs initially remaining suspended. KSM was then
enabled and set to scan 100 pages per 20 milliseconds, i. e.
the default configuration of KSM was used. At the same
time, the VMs were unsuspended. From this point onwards,
the following KSM statistics, which are accessible through
the path /sys/kernel/mm/ksm/, were monitored every
0.25 seconds for a period of 30 minutes:

• the number of physical pages used by KSM, i. e. the
number of copy-on-write pages (pages_shared)
and

• the number of extra virtual pages referring to these
physical pages (pages_sharing), which allows
determining how much memory was saved and

• the number of physical copy-on-write (standard
KSM, FakeDD) or copy-on-access (VUsion) pages
that have only one virtual page referring to them
(pages_fakededup).

The number of physical copy-on-write/-access pages
with one reference is not normally reported by the kernel.
Therefore, the kernels used in this experiments are specially
patched to monitor and report this value. However, as this
introduces additional instructions into the KSM implement-
ation, these kernels are only used in the experiments for this
section, while the kernels used in all other experiments do
not include the additional statistics code.

Figure 4 shows the development of pages_shared for
standard KSM, FakeDD and VUsion over time. The results
indicate that FakeDD and VUsion both add significantly
more pages to the stable tree. In the case of FakeDD,
these pages are additional copy-on-write pages with only
one virtual page pointing to them, due to FakeDD fake-
deduplicating unique pages. This is similar for VUsion,
but pages are copy-on-access. The graph for VUsion lags
significantly behind that for FakeDD, though, which is likely
due to VUsion considering fewer pages as candidates for ad-
dition to the stable tree owing to its working set estimation.
VUsion only catched up towards the end of the experiment.
It is likely that the number of pages_shared would
remain lower in an environment with more VM activity,
though: VUsion removes such pages on merely being read,
as copy-on-access is used instead of copy-on-write both for
deduplicated pages and unique pages that have been made
copy-on-access. The results are in line with expectations,
as the countermeasures also perform copy-on-write (or even
copy-on-access) for pages which are unique within the host’s
memory.

Note that while the increase in the number of
pages_shared for FakeDD and VUsion indicates that

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

0 5 10 15 20 25 30

pa
ge

s_
sh

ar
ed

time (minutes)

standard KSM
VUsion

FakeDD

Figure 4: pages_shared over time

the stable tree is larger, these pages no longer have to be
managed on the unstable tree. With standard KSM, the
number of pages on the stable tree and the unstable tree
before it is cleared at the end of a memory pass would be
similar to the number of pages observed on the stable tree for
FakeDD in the experiment. This is due to both implement-
ations considering the same pages for deduplication. Only
VUsion manages to actually reduce the number of pages
that have to be managed in trees, but this comes at the cost
of considering fewer pages for deduplication.

Figure 5 shows how much memory standard KSM,
FakeDD and VUsion saved by deduplicating pages over
time. The results indicate that FakeDD is almost equally
effective at achieving memory savings as standard KSM.
The amount of memory saved is almost identical throughout
the experiment. However, the results indicate that FakeDD
realises the memory savings minimally later than standard
KSM. VUsion, on the other hand, achieves significantly
lower memory savings. Not only do its memory savings lag
behind in time, they also never reach the level of standard
KSM and FakeDD. This indicates that VUsion’s working set
estimation as well as breaking deduplication even for pages
being read comes at the cost of reducing memory savings.
After 20 minutes, VUsion saved 932.47 MiB less than the
standard KSM impementation (-30.99 %). At the end of the
experiment, the lost memory savings of VUsion reduced to
371.43 MiB (-11.87 %).

Figure 6 shows the number of copy-on-write (standard
KSM, FakeDD) or copy-on-access (VUsion) pages on the
stable tree with only one virtual page attached. The results
indicate that FakeDD creates many copy-on-write pages
with just one reference at the same time as the rise in
pages_shared and memory savings. This is in line with
expectations, as unique pages would be scanned and become
eligible at a similar time as the duplicate pages. Also as
expected, the number of copy-on-write pages with only one
reference about matches the difference in pages_shared
between standard KSM and FakeDD.

Results are similar for copy-on-access pages when run-
ning VUsion. It also creates a large number of such
pages with only one virtual page attached. As with

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

0 5 10 15 20 25 30

m
em

or
y

sa
ve

d
(M

iB
)

time (minutes)

standard KSM
FakeDD
VUsion

Figure 5: Memory saved through deduplication over time

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

0 5 10 15 20 25 30

C
oW

/C
oA

 p
ag

es
 w

it
h

 o
nl

y
on

e
pa

ge
 a

tt
ac

he
d

time (minutes)

standard KSM
FakeDD
VUsion

Figure 6: Number of copy-on-write pages on the stable tree
with only one virtual page attached

pages_shared, the graph lags behind FakeDD slightly in
time. The number of such pages is slightly lower for VUsion
than for FakeDD throughout most of the experiment, but –
unlike for memory savings – slightly exceeds it towards the
end of the experiment.

Note that the number of copy-on-write pages with only
one reference is larger than zero even for standard KSM.
This is because while pages are only marked as copy-on-
write when there is more than one identical virtual page,
the copy-on-write state is not removed from a physical page
even if there is only one reference left to it. Such situations
can arise when all but one copy of a page have been modified
after originally having been deduplicated.

5.3. Application performance

While it is important that the countermeasure protects
against side-channel attacks and deduplication still works
as intended, it is also important that is does not cause
a large overhead compared to standard KSM. One aspect
of this is that changing the deduplication mechanism may
also have an impact on the performance of applications
executed within VMs, which this section aims to evaluate.
For FakeDD, some write operations will be slower than

on a system using the stock KSM implementation. This
is because pages that are unique and stable are marked
copy-on-write by the deduplication mechanism. It thus takes
longer to write to these pages. Furthermore, the copying
operations use memory bandwidth that will not be available
for other operations.

For the experiments, four VMs were used. Two VMs
were allocated two CPU cores and 1 GiB of memory each
and were running Debian 10. In addition to the base system,
these VMs both kept an identical set of 100 files with a size
of 1 to 100 pages in memory. This means that the memory
of these VMs contained many identical pages that could
be deduplicated. A third VM was allocated two CPU cores
and 4 GiB of memory and was also running Debian 10. This
VM kept a separate set of five 512 MiB files in memory.
Thus, the memory of this VM contained a large number of
unique pages that could not be deduplicated. Finally, a fourth
VM running Debian 11 was allocated eight CPU cores
and 4 GiB of memory. This VM was used to perform the
application performance benchmarks. Assigning it a number
of cores identical to the number of virtual cores on the
host ensures that the benchmarks could make use of the full
CPU resources of the system. Therefore, any potential CPU
overhead of the changed deduplication mechanism would
also impact performance within the VM and could not be
hidden away on another core.

For each experiment, the three background VMs were
first started and the data files loaded into memory. Then,
the benchmark VM was started. Before starting the bench-
marks, KSM was activated if the experiment required it.
It was set to scan 500 pages every 10 milliseconds, i. e. a
relatively aggressive configuration was chosen that should
have a higher performance impact than the default config-
uration. The KSM statistics values indicating the number
of physical pages used by deduplication (pages_shared)
and the number of extra virtual pages referring to them
(pages_sharing) were monitored. Once these values
stabilised, the benchmarks were launched on the benchmark
VM. For this, Phoronix Test Suite (PTS) 10.8.4 was used
to run a range of individual benchmarks covering different
workloads. PTS automatically adjusts the number of runs of
each benchmark to achieve a low standard deviation [32].
The StandardDeviationThreshold parameter was set to 2.5.
To increase the reliability of the results and avoid PTS
cutting down on the number of executions of long-running
benchmarks, the strict-run command was used to run
the benchmarks.

Table 1 shows the results of the individual benchmarks,
comparing the performance of the different deduplication
set-ups tested. The results indicate that the impact of the
different deduplication mechanisms depends strongly on the
workload.

For some workloads, performance is almost unaffected
by activating deduplication with or without one of the coun-
termeasures. One example for this is the ‘syscall basic’ test
of perf-bench, where activating standard KSM reduced per-
formance by 0.97 %. FakeDD and VUsion achieved slightly
better results than standard KSM, but no significant differ-

Table 1: Results of Phoronix kernel benchmarks compared between a host without KSM as well as with standard KSM,
FakeDD and VUsion. Performance differences that are not statistically significant are marked with [].

Test (Unit, △/▽ better?) No KSM Std. KSM ± no KSM FakeDD ± std. KSM VUsion ± FakeDD
7-Zip, compression (MIPS, △) 29899 26369 -11.81% 27689 +5.01% 27015 -2.43%
7-Zip, decompression (MIPS, △) 22263 21636 -2.82% 22299 +3.06% 22159 -0.63%
Apache, 1000 concurrent requests (requests/s, △) 29170.63 24829.55 -14.88% 25724.87 +3.61% 25383.8 -1.33%
Dbench, 12 clients (MB/s, △) 33.0597 33.3719 [+0.94%] 33.5226 [+0.45%] 33.6481 [+0.37%]
LAME MP3 Encoding (s, ▽) 9.797 9.831 +0.35% 9.835 +0.04% 9.863 +0.28%
memcached, set-to-get ratio: 1:1 (operations/s, △) 814728.37 786836.49 -3.42% 690308.26 -12.27% 703472.92 +1.91%
OpenSSL, RSA4096 (sign/s, △) 655.1 630 -3.83% 653 +3.65% 671.2 +2.79%
OpenSSL, RSA4096 (verify/s, △) 42064.1 41252 -1.93% 43238.6 +4.82% 43870.8 +1.46%
perf-bench, epoll wait (ops/sec, △) 132073 127383 -3.55% 129692 +1.81% 129628 -0.05%
perf-bench, futex hash (ops/sec, △) 1500254 1475094 -1.68% 1497932 +1.55% 1483198 -0.98%
perf-bench, futex lock-pi (ops/sec, △) 1711 1674 -2.16% 1666 -0.48% 1666 [±0%]
perf-bench, memcpy 1MB (GB/sec, △) 21.419358 21.658203 [+1.12%] 21.754798 +0.45% 21.443243 -1.43%
perf-bench, memset 1MB (GB/sec, △) 34.885568 34.634202 -0.72% 34.844534 +0.61% 34.953145 +0.31%
perf-bench, sched pipe (ops/sec, △) 188780 194652 +3.11% 188388 -3.22% 184173 -2.24%
perf-bench, syscall basic (ops/sec, △) 3023633 2994345 -0.97% 2999231 +0.16% 3002090 [+0.1%]
pmbench, 8 threads, read+write (us (latency), ▽) 0.0846 0.0971 +14.78% 0.095 -2.16% 0.0981 +3.26%
pmbench, 8 threads, read (us (latency), ▽) 0.0475 0.0469 [-1.26%] 0.0464 -1.07% 0.0527 +13.58%
pmbench, 8 threads, write (us (latency), ▽) 0.0455 0.0549 +20.66% 0.0516 -6.01% 0.0561 +8.72%
pgbench, scaling 1, 100 clients, read (tps, △) 99258 84827 -14.54% 82687 -2.52% 83610 [+1.12%]
pgbench, scaling 1, 100 clients, read (ms (latency), ▽) 1.008 1.179 +16.96% 1.21 +2.63% 1.196 [-1.16%]
SQLite, 8 threads (s, ▽) 3002.437 3404.865 +13.4% 2998.585 -11.93% 3269.939 +9.05%
x264, Bosphorus 1080p (fps, △) 38.29 36.39 -4.96% 37.67 +3.52% 36.73 -2.5%

ence could be found between the two countermeasures.
Other workloads see a larger hit in performance. Two

examples of this are the tests of pmbench involving write
operations, where activating standard KSM causes a per-
formance degradation of 14.78 % and 20.66 %, respectively.
For these, FakeDD performs slightly better than standard
KSM, while VUsion performs worse. Somewhat similarly,
Apache sees a 14.88 % degradation in performance with
standard KSM, while VUsion performs slightly better and
FakeDD again slightly better than VUsion. The results in-
dicate that the largest part of the performance overhead for
these benchmarks is caused by deduplication being activated
at all, while the countermeasures have a smaller impact on
performance.

For memcached, the situation is somewhat different.
Here, the results indicate that standard KSM causes a re-
latively small performance overhead of 3.42 %. The two
countermeasures, on the other hand, incur an additional
performance overhead of more than 10 %.

For some workloads, PTS reports a positive performance
impact of the countermeasures. For example, 7-Zip com-
pression sees a reduction in performance by 11.81 % when
standard KSM is activated. FakeDD, however, achieved a
5.01 % higher performance than standard KSM. VUsion was
2.43 % slower than FakeDD, but still faster than standard
KSM.

The results indicate that VUsion causes a larger per-
formance overhead than FakeDD in most scenarios. In some
cases, this was quite drastic, e. g. for the read test of pm-
bench, which was 13.58 % slower than with FakeDD. In
other cases, however, it offers a performance benefit over
FakeDD, e. g. for the RSA4096 tests of the OpenSSL bench-
mark. A possible explanation for this is that VUsion breaks
deduplication once pages are accessed. If a workload often
reads pages that VUsion marks as copy-on-access, this could
be expected to negatively affect performance compared to
standard KSM and FakeDD, which would not copy a page

on a read operation. On the other hand, this may lead to
pages that are frequently accessed by the benchmark simply
remaining unaffected by copy-on-access with VUsion, while
standard KSM and FakeDD may mark these pages as copy-
on-write due to them only being read, but not written to.

Table 2 shows the average number of page faults per
second for each individual Phoronix benchmark compared
between the different deduplication mechanisms. To obtain
these numbers, each benchmark was run for a period of
30 minutes using the stress-run command. Simultan-
eously, the page fault rate was measured using the sar
command on the host OS. Otherwise, the experiment setup
was identical to the previously described application per-
formance benchmarks.

Any deduplication mechanism creates potential for ad-
ditional page faults: For standard KSM, this occurs only
for pages which were deduplicated due to multiple copies
existing on the host. For FakeDD, page faults can ad-
ditionally occur for unique pages marked copy-on-write.
VUsion not only allows for page faults on write operations
on both deduplicated and unique pages, but also on mere
read operations. However, this is countered by its working
set estimation enforcing stricter inactivity requirements to
be fulfilled before a page is considered for deduplication
or being marked copy-on-access. Note that any potential
performance impact of the additional page faults will also
be reflected in the performance measurements presented in
Table 1.

As expected, the results indicate that activating deduplic-
ation increases the page fault rate for all benchmarks. Activ-
ating standard KSM increases it by at 62.15 % (perf-bench,
memset) to 1 339.92 % (Apache). For 6 of 19 benchmarks,
FakeDD reduces the page fault rate compared to standard
KSM. For the other benchmarks, it further increases the
page fault rate, although in most cases, the increase is
relatively small in comparison to that caused by activating
standard KSM. Compared to FakeDD, VUsion reduces the

Table 2: Average number of page faults per second observed while running Phoronix benchmarks for 30 minutes each.
Test No KSM Std. KSM ± no KSM FakeDD ± std. KSM VUsion ± FakeDD
7-Zip, compression+decompression 73.66 258.92 +251.51% 495.72 +91.46% 296.28 -40.23%
Apache, 1000 concurrent requests 49.32 710.17 +1339.92% 584.05 -17.76% 303.68 -48.00%
Dbench, 12 clients 98.57 1336.13 +1255.51% 1202.44 -10.01% 225.93 -81.21%
LAME MP3 Encoding 111.91 327.46 +192.61% 313.91 -4.14% 204.30 -34.92%
memcached, set-to-get ratio: 1:1 45.61 215.14 +371.69% 289.12 +34.39% 756.67 +161.71%
OpenSSL, RSA4096 72.78 176.57 +142.61% 195.54 +10.74% 132.49 -32.24%
perf-bench, epoll wait 95.46 194.18 +103.42% 283.61 +45.06% 165.65 -41.59%
perf-bench, futex hash 98.10 186.31 +89.92% 212.28 +13.94% 146.55 -30.96%
perf-bench, futex lock-pi 105.45 234.30 +122.19% 253.35 +8.13% 2495.89 +885.15%
perf-bench, memcpy 1MB 178.01 291.56 +63.79% 263.79 -9.52% 206.95 -21.55%
perf-bench, memset 1MB 192.85 312.70 +62.15% 308.08 -1.48% 242.18 -21.39%
perf-bench, sched pipe 84.94 211.40 +148.88% 220.13 +4.13% 161.70 -26.54%
perf-bench, syscall basic 105.25 219.93 +108.96% 276.31 +25.64% 169.51 -38.65%
pmbench, 8 threads, read+write 67.84 202.91 +199.10% 326.28 +60.80% 195.71 -40.02%
pmbench, 8 threads, read 82.40 164.92 +100.15% 216.19 +31.09% 130.86 -39.47%
pmbench, 8 threads, write 67.18 215.59 +220.91% 245.83 +14.03% 191.19 -22.23%
pgbench, scaling 1, 100 clients, read 48.18 486.13 +908.99% 973.59 +100.27% 527.75 -45.79%
SQLite, 8 threads 177.21 350.21 +97.62% 336.49 -3.92% 265.88 -20.98%
x264, Bosphorus 1080p 59.71 785.64 +1215.76% 997.29 +26.94% 832.49 -16.52%

page fault rate in 17 of 19 benchmarks. In some cases, its
page fault rate is even lower than that of standard KSM,
likely due to its working set estimation (which also reduces
memory savings, though). In two benchmarks, however, it
leads to a sizeable further increase in page fault rate. None
of the benchmarks using deduplication exhibited a lower
page fault rate than the corresponding benchmark without
deduplication.

Overall, the results indicate that there is a performance
penalty for enabling deduplication in most tests. For most of
these, the penalty is relatively small and enabling deduplica-
tion only leads to a slow-down in the single-digit percentage
range. However, the performance impact is larger for some
tests, e. g. the pmbench tests involving write operations.
Where there is a performance penalty, most of it is already
incurred by enabling the standard KSM implementation.
The countermeasures incur a higher performance overhead
for many tests. However, it is typically smaller than that
incurred by activating KSM in the first place. In some cases,
a countermeasure can even offer better performance than
standard KSM. All in all, where the performance impact
of standard KSM is deemed acceptable, the slightly higher
performance overhead caused by one of the secure modified
implementation may also be acceptable in exchange for the
added security.

5.4. Resource usage of deduplication mechanism

In addition to influencing the performance of applica-
tions, e. g. through additional pages faults, a content-based
deduplication also causes a more directly observable over-
head. It needs to regularly scan the memory of a computer
for duplicate pages. Due to the required comparisons of
page contents, this consumes CPU resources. In Linux, the
memory scanning including the page comparison is per-
formed by the ksmd process. The resource consumption is
thus allocated to this process and can be measured directly.
This section will therefore look into what impact FakeDD
has on the CPU time consumed by the ksmd process.

An identical VM set-up as for the application perform-
ance experiments (cf. Section 5.3) was used, i. e. two VMs
with 1 GiB of RAM were holding an identical set of 100
files with a size between 1 and 100 pages. A third VM was
holding a set of five files with a size of 512 MiB each. The
last VM was executing the Phoronix Test Suite 10.8.4 also
used for the evaluation of application performance to ensure
that memory pages are constantly being modified, so that
they must be scanned by KSM. The same range of diverse
benchmarks was used to ensure a variation of workloads.

As for the page fault rate experiment, the host system
was freshly booted with the appropriate kernel for each im-
plementation (standard KSM, FakeDD, VUsion). Snapshots
of the VMs were restored in a paused state. KSM was then
activated and set to scan 500 pages every 10 milliseconds,
i. e. a relatively aggressive configuration was again used to
more clearly emphasise any potential performance impact.
After activating KSM, the VMs were unpaused. The bench-
marks were then started: Each benchmark was run for 30
minutes using the stress-run command. Three minutes
after a benchmark had ended, the next one was started, i. e.
the total run time was 624 minutes (19 benchmarks * 30
minutes + 18 intervals * 3 minutes). Benchmarks were run
in the same order as shown in Table 2. From the time of
starting the first benchmark, the CPU time consumed by the
ksmd process was polled and stored every 60 seconds until
all benchmarks had been executed.

Figure 7 shows the CPU time consumed by the ksmd
process over time for standard KSM, FakeDD and VUsion.
Note that this does not represent the full overhead of KSM,
but only that incurred by the actual scanning of memory
pages and related management activities, i. e. the overhead in
application performance, as analysed in the previous section,
is separate from this.

For all three KSM implementations, the CPU time con-
sumed rises almost linearly over time, with only little vari-
ation in the rate of CPU consumption between workloads.
The standard KSM implementation consumes 6 487 CPU
seconds over the course of the experiment. Interestingly,
both implementations aiming at countering side-channel

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

66 132 198 264 330 396 462 528 624

C
P
U

 t
im

e
(s

)

time (minutes)

standard KSM
FakeDD
VUsion

Figure 7: CPU time consumed over time by the ksmd
process of the modified implementation compared to the
stock and VUsion implementations

attacks reduce the CPU consumption. FakeDD consumes
518 CPU seconds throughout the experiment, representing
a 92 % reduction. The VUsion implementation needs even
fewer CPU resources and consumes just 377 CPU seconds
throughout the experiment, representing a 94.2 % reduction
compared to standard KSM.

The results indicate that both countermeasures decrease
the CPU consumption of the KSM scanner. At first, this may
seem counter-intuitive. One might expect CPU consumption
to increase, as significantly more pages are converted to
copy-on-write KSM pages and inserted into the stable tree.
However, this effect could be countered by the FakeDD
scanner actually skipping pages that have been changed
since the last scan in the first pass instead of immediately
comparing them to pages on the stable tree. Furthermore,
FakeDD does not constantly re-scan unchanged pages dur-
ing each scan cycle. The results indicate an even stronger
effect for VUsion with its working set estimation algorithm,
which tries to skip even pages that have merely been ac-
cessed in any form.

6. Conclusion

This paper presents FakeDD, which uses fake deduplica-
tion as a countermeasure against timing side-channel attacks
based on the write time differences caused by content-
based memory deduplication. It marks pages as copy-on-
write even if they are unique on the host and no second
identical page is present.

The results indicate that FakeDD eliminates timing dif-
ferences between overwriting unique and duplicate pages.
Therefore, it prevents an attacker from determining whether
another copy of a page exists on the host. Furthermore,
the results indicate that FakeDD’s effectiveness in saving
memory is almost identical to that of standard KSM and
superior to VUsion. Finally, the results indicate a decrease
in the CPU time consumption of the scanner process, while
there is some overhead in terms of application performance.
While FakeDD increases this overhead for some usage
scenarios, the increase is typically smaller than the over-
head caused by deploying KSM in the first place. There-
fore, where the performance overhead of standard KSM

is deemed acceptable, the additional overhead may be an
acceptable trade-off for the added security.

A limitation of FakeDD is that it only defends
against side-channel attacks based on write operations.
Rowhammer-based attacks, which rely on read operations,
are therefore not covered, unlike in VUsion. Furthermore,
FakeDD, unlike VUsion, does not move fake-deduplicated
pages to a new location. Therefore, page colouring and
page sharing attacks, as described by Oliverio et al. [2],
which rely on cache-based side-channel attacks, and, in the
latter case, on some level of control over the victim, are not
covered by its attacker model.

Due to its higher memory savings potential and lower
overhead compared to VUsion, FakeDD complements the
state of the art – which of the two countermeasures is
more suitable for a system will depend on the attacker
model. If additional protection against only some of the
attacks additionally covered by VUsion is desired, additional
points on the trade-off could be approached, e. g. by adding
a mechanism to FakeDD that moves a page on marking
it copy-on-write, thereby protecting against page colouring
and page sharing attacks. Note, however, that while many
attacks based on Rowhammer are facilitated by deduplica-
tion due to making it easier to access a physyical memory
page without having any direct access to the application
controlling the target virtual page, some forms of Row-
hammer attacks (e. g. [16], [33], [34]) pose a danger even
without memory deduplication being active. Therefore, this
vulnerability should best be addressed separately. If systems
were made unaffected by Rowhammer attacks, this would
remove the need to consider such attacks in the context of
memory deduplication on such systems.

Potential future work includes implementing fake de-
duplication for other content-based memory deduplication
mechanisms. This would allow to evaluate its effectiveness
and performance impact in other environments. Further-
more, even if the information exposed seems useless to
an attacker at present, it might be worthwhile to consider
whether countermeasures could be designed in a way to
remove the residual side-channel described in Section 4.2,
which could give away information about the configuration
of the deduplication mechanism.

References

[1] K. Suzaki, K. Iijima, T. Yagi, and C. Artho, “Memory deduplication
as a threat to the guest OS,” in Proceedings of the Fourth European
Workshop on System Security, EUROSEC’11, E. Kirda and S. Hand,
Eds. ACM, 2011.

[2] M. Oliverio, K. Razavi, H. Bos, and C. Giuffrida, “Secure page fusion
with VUsion,” in Proceedings of the 26th Symposium on Operating
Systems Principles. ACM, 2017, pp. 531–545.

[3] A. Arcangeli, I. Eidus, and C. Wright, “Increasing memory density
by using KSM,” in Proceedings of the Linux Symposium, 2009, pp.
19–28.

[4] C. A. Waldspurger, “Memory resource management in VMware ESX
server,” in Proceedings of the 5th Symposium on Operating Systems
Design and Implementation, OSDI, D. E. Culler and P. Druschel, Eds.
USENIX Association, 2002.

[5] Broadcom, “Additional Transparent Page Sharing management
capabilities and new default settings,” Broadcom Knowledge Base
Article 323624, 1 2021, (accessed 2024-05-28). [Online]. Available:
https://knowledge.broadcom.com/external/article?legacyId=2097593

[6] Xen Project, “Support statement for this release,” 2023, (accessed
2024-05-28). [Online]. Available: https://xenbits.xen.org/docs/4.18-
testing/SUPPORT.html

[7] ——, “[xen.git] / xen / arch / x86 / mm / mem sharing.c,” 2011,
(accessed 2024-05-28). [Online]. Available: https://xenbits.xen.org/
gitweb/?p=xen.git;a=blob;f=xen/arch/x86/mm/mem sharing.c;h=
da28266ef0769570c598c097e0d917af0b634820;hb=HEAD

[8] K. Fraser, “Reads from read only parent disk images are intercepted,
and are used to detect potentially sharable memory pages,” Git
commit in the Xen project repository, 12 2009, (accessed 2024-
05-28). [Online]. Available: https://xenbits.xenproject.org/gitweb/?p=
xen.git;a=commit;h=4515e6d82b23366933055b0ad60d8ed89f5a2b92

[9] T. K. Lengyel, “Remove undocumented and
unmaintained tools/memshr library,” Git commit
8d1d28bfcfd04d15c07c2f5c63aed3c7d220b024 in the Xen project
repository, 1 2020, accessed 2024-05-28. [Online]. Avail-
able: https://xenbits.xenproject.org/gitweb/?p=xen.git;a=commit;h=
8d1d28bfcfd04d15c07c2f5c63aed3c7d220b024

[10] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren, G. Var-
ghese, G. M. Voelker, and A. Vahdat, “Difference engine: harnessing
memory redundancy in virtual machines,” Communications of the
ACM, vol. 53, no. 10, pp. 85–93, 2010.

[11] R. Owens and W. Wang, “Non-interactive OS fingerprinting through
memory de-duplication technique in virtual machines,” in 30th IEEE
International Performance Computing and Communications Confer-
ence, IPCCC 2011, S. Zhong, D. Dou, and Y. Wang, Eds. IEEE
Computer Society, 2011.

[12] J. Lindemann and M. Fischer, “A memory deduplication side-channel
attack to detect applications in co-resident virtual machines,” in Pro-
ceedings of the 33rd Annual ACM Symposium on Applied Computing,
SAC 2018, H. M. Haddad, R. L. Wainwright, and R. Chbeir, Eds.
ACM, 2018, pp. 183–192.

[13] ——, “Efficient identification of applications in co-resident vms
via a memory side-channel,” in ICT Systems Security and Privacy
Protection - 33rd IFIP TC 11 International Conference, SEC 2018,
held at the 24th IFIP World Computer Congress, WCC 2018, ser.
IFIP Advances in Information and Communication Technology, L. J.
Janczewski and M. Kutylowski, Eds., vol. 529. Springer, 2018, pp.
245–259.

[14] A. Barresi, K. Razavi, M. Payer, and T. R. Gross, “CAIN: silently
breaking ASLR in the cloud,” in 9th USENIX Workshop on Offensive
Technologies, WOOT ’15, A. Francillon and T. Ptacek, Eds. USENIX
Association, 2015.

[15] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida, “Dedup est machina:
Memory deduplication as an advanced exploitation vector,” in IEEE
Symposium on Security and Privacy 2016. IEEE Computer Society,
2016, pp. 987–1004.

[16] Y. Kim, R. Daly, J. S. Kim, C. Fallin, J. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without access-
ing them: An experimental study of DRAM disturbance errors,” in
ACM/IEEE 41st International Symposium on Computer Architecture,
ISCA. IEEE Computer Society, 2014, pp. 361–372.

[17] J. Xiao, Z. Xu, H. Huang, and H. Wang, “Security implications of
memory deduplication in a virtualized environment,” in 2013 43rd
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN). IEEE Computer Society, 2013.

[18] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar, “Know thy
neighbor: Crypto library detection in cloud,” Proceedings on Privacy
Enhancing Technologies, vol. 2015, no. 1, pp. 25–40, 2015.

[19] V. Varadarajan, Y. Zhang, T. Ristenpart, and M. M. Swift, “A place-
ment vulnerability study in multi-tenant public clouds,” in USENIX
Security Symposium. USENIX Association, 2015, pp. 913–928.

[20] Z. Xu, H. Wang, and Z. Wu, “A measurement study on co-residence
threat inside the cloud,” in USENIX Security Symposium. USENIX
Association, 2015, pp. 929–944.

[21] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you,
get off of my cloud : Exploring information leakage inthird-party
compute clouds,” in Proceedings of the 2009 ACM Conference on
Computer and Communications Security, CCS, E. Al-Shaer, S. Jha,
and A. D. Keromytis, Eds. ACM, 2009, pp. 199–212.

[22] A. Honig and N. Porter, “Google Cloud Platform: 7 ways
we harden our KVM hypervisor at Google Cloud: security in
plaintext,” January 2017, (accessed 2024-05-27). [Online]. Avail-
able: https://cloud.google.com/blog/products/gcp/7-ways-we-harden-
our-kvm-hypervisor-at-google-cloud-security-in-plaintext?m=1

[23] G. Irazoqui, T. Eisenbarth, and B. Sunar, “Jackpot stealing
information from large caches via huge pages,” IACR Cryptology
ePrint Archive, 2014. [Online]. Available: http://eprint.iacr.org/2014/
970

[24] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos,
“Flip feng shui: Hammering a needle in the software stack,” in 25th
USENIX Security Symposium, T. Holz and S. Savage, Eds. USENIX
Association, 2016.

[25] A. Agarwal and T. N. B. Duong, “Secure virtual machine placement
in cloud data centers,” Future Gener. Comput. Syst., vol. 100, pp.
210–222, 2019.

[26] J. Lindemann, “How to hide your VM from the big bad wolf?
co-location resistance vs. resource utilisation in VM placement
strategies,” in Proceedings of the 18th International Conference on
Availability, Reliability and Security, ARES. ACM, 2023, paper 41.

[27] Amazon AWS, “Amazon EC2 Dedicated Instances,” 2024,
(accessed 2024-05-28). [Online]. Available: https://aws.amazon.com/
ec2/pricing/dedicated-instances/

[28] M. Payer, “Hexpads: A platform to detect ‘stealth’ attacks,” in Engin-
eering Secure Software and Systems - 8th International Symposium,
ESSoS, ser. Lecture Notes in Computer Science, J. Caballero, E. Bod-
den, and E. Athanasopoulos, Eds., vol. 9639. Springer, 2016, pp.
138–154.

[29] A. W. Paundu, D. Fall, D. Miyamoto, and Y. Kadobayashi, “Lever-
aging kvm events to detect cache-based side channel attacks in a
virtualization environment,” Security and Communication Networks,
vol. 2018, no. 1, p. 4216240, 2018.

[30] I. Eidus and H. Dickins, “Kernel samepage merging feature,” 11
2009, note: The file has been updated (and split from another file)
after 2009, but the original date remains therein. (accessed 2024-
05-28). [Online]. Available: https://elixir.bootlin.com/linux/v6.9.2/
source/Documentation/admin-guide/mm/ksm.rst

[31] Debian Code Search, “MADV MERGEABLE,” 5 2024.
[Online]. Available: https://codesearch.debian.net/search?q=MADV
MERGEABLE

[32] M. Larabel, “Phoronix Test Suite docu-
mentation (documentation/phoronix-test-suite.md),” 5
2019, (accessed 2024-05-28). [Online]. Available:
https://github.com/phoronix-test-suite/phoronix-test-suite/blob/
7a93cf85f4b6f5a0049b25a02f4f483c74e4154c/documentation/
phoronix-test-suite.md

[33] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A remote
software-induced fault attack in javascript,” in 13th International
Conference on Detection of Intrusions and Malware, and Vulnerab-
ility Assessment, DIMVA, ser. Lecture Notes in Computer Science,
J. Caballero, U. Zurutuza, and R. J. Rodrı́guez, Eds., vol. 9721.
Springer, 2016, pp. 300–321.

[34] M. Seaborn and T. Dullien, “Exploiting the dram rowhammer bug to
gain kernel privileges,” Black Hat, vol. 15, 2015.

