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Abstract
Balancing the trade-off between personal data processing and the right to privacy

requires a measure for privacy. Such measures are provided by formal models, which
also enable proofs of privacy preservation. Syntactic privacy has been praised as
an intuitive family of such models. This report reviews the literature on syntactic
privacy models and their shortcomings. The results reveal their inherent complexity
and fragility. A short review of open-source implementations supporting syntactic
privacy is also included.

1 Introduction

In recent years, data-driven innovations such as machine learning have steadily increased
the demand for data. If an application requires personal data, this demand conflicts
with every individual’s right to privacy. Resolving this trade-off requires a measure or
definition of privacy. A formal approach is desirable because it allows to prove that privacy
is accounted for.
Syntactic privacy models such as k-anonymity [59] are one attempt to address this.

They define privacy as a property of a data set. Any data which complies with this cri-
terion is considered privacy-preserving and can be processed or published. This promise,
combined with their intuitiveness, have contributed to the popularity of syntactic privacy
models.
This report reviews the literature on syntactic privacy. It focuses on the proposed

models, algorithms and their shortcomings. The results demonstrate that the formal
guarantees are fragile and dependent on a complex set of assumptions. This contrasts
their apparent intuitiveness and motivates the use of a much more robust definition,
differential privacy [26].
Preliminaries are established in Section 2. Section 3 outlines the historical development

of syntactic privacy models. New models have been proposed in response to discovered
attacks on their predecessors. The algorithms and implementations which put these mod-
els into practice are presented in Sections 4 and 5. Remaining shortcomings are reviewed
in Section 3.4. Finally, Section 6 concludes and summarizes our results.
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Table 1: A tabular data set.

Name Mail Age Profession Diagnosis

Alice alice@example.com 27 accountant burn-out
Bob abc@example.org 35 teacher cancer

2 Background

Before we review the research on syntactic privacy, we present its foundations. The field
is rooted in statistical disclosure control, which aims at preventing privacy invasions from
published statistics. This is demonstrated by the first publications [59, 60] on syntactic
privacy, which view syntactic privacy as an improvement over existing statistical disclosure
control approaches. Consequently, its underlying data model, privacy breach definitions
and principal means to prevent such breaches are inherited from the statistics community.

2.1 Data Model

Syntactic privacy models [10, 43, 46, 48, 59, 67] assume that the data is a table. An
example is shown in Table 1. There is exactly one row or record for each individual
described by the data. These records consist of cells or attributes such as names or
professions. Three types of attributes are distinguished.

• (Direct) identifiers such as names and mail addresses identify the individual de-
scribed by a record directly.

• Quasi-identifiers [20] are known by an individual’s surroundings or the general pub-
lic. Examples include age and profession. An alternative definition [59] considers
attributes whose values can appear in previously published data sets.

• Sensitive attributes [7] of an individual should remain private, for instance a dia-
gnosis.

Syntactic privacy assumes that attributes are classified into these three groups without
any overlaps and that the classification is the same for all records. Furthermore, it is
commonly [43, 46, 66, 67] assumed that there is exactly one sensitive attribute.
Roughly speaking, the objective of syntactic privacy is preventing that information

from a released data set is linked to the described individuals. This is achieved via an-
onymization. Identifiers must be removed to prevent trivial re-identification. However,
unique quasi-identifier combinations may still identify individuals [20], which was con-
firmed experimentally: 87% of the US population are uniquely identified by their sex,
date of birth and postal code [60]. Hence, syntactic privacy anonymize data by modifying
the quasi-identifiers. The sensitive attributes are left unaltered because they are viewed
as unrelated to the re-identification risk. Consequently, misclassifying an attribute might
enable privacy breaches. This caveat is elaborated in Section 3.4.2.
We formalize the resulting data model as follows. A data set X = {x1, ..., xn} is a finite

multiset of n records. Every record xi = (q1, ..., qm, s) is a vector of m quasi-identifier
attribute values qj and a single sensitive value s. Note that finite attribute domains can
be assumed because X is finite.
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2.2 Definitions of Disclosure

The previous section simplified the objective of syntactic privacy as preventing privacy
breaches. Informally, a privacy breach occurs when a data set discloses some information
it is not supposed to. This led to different definitions of disclosures in the literature,
which are discussed in the following.
The first definition is statistical disclosure by Dalenius [19]. It defines disclosure as any

event where an adversary can predict the sensitive attribute value of an individual more
accurately with access to the data set than without it. This definition is close to above
informal concept of privacy breaches. However, Dwork [26] provided a formal proof that
statistical disclosure is impossible to prevent if the data set retains any utility.
Lambert [40] distinguishes identity and attribute disclosure. The former is equivalent

to re-identification and occurs when the adversary can link a record to an individual. The
latter describes events where the adversary links a sensitive value to an individual. Note
that identity disclosure implies attribute disclosure as long as the sensitive attributes are
not modified. However, the reverse is not true as illustrated by homogeneity attacks,
which are discussed in Section 3.
Nergiz, Atzori and Clifton [48] added a third disclosure type to identity and attribute

disclosure. Their definition describes the event where an adversary learns that an indi-
vidual’s data is contained within the data set. This knowledge may be combined with
context information about the data set. For instance, inferring that a patient’s record
appears in a data set of cancer patients reveals their health status. While this disclosure
was initially unnamed by For instance, knowing that someone’s record is contained in a
cancer research data set While Nergiz, Atzori and Clifton did not introduce a term for
these disclosures, it is called membership disclosure in subsequent literature. To the best
of our knowledge, this term was first introduced in [44].
These definitions differ in what kind of information is concerned. The following three

distinctions have also been proposed in the literature. Dalenius [19] distinguishes exact
disclosure, where the adversary’s prediction is certain, and approximate disclosure, where
some uncertainty remains. Lambert [40] observed that the adversary’s prediction is either
correct or not, leading to true and false disclosures. Finally, in the context of attribute
disclosure, Machanavajjhala et al. [46] introduced the terms positive disclosure, where the
adversary infers the attribute value, and negative disclosure, where they only eliminate a
possible value.
Note the type of information and these three distinctions are all orthogonal to each

other. This leads to a four-dimensional taxonomy of disclosures. For instance, if an
adversary erroneously infers that an individual does not have the health status healthy, a
false negative exact attribute disclosure occurred. Syntactic privacy models are designed
to protect from certain disclosures within this taxonomy or some equivalent concepts.

2.3 Approaches to Sanitization

Preventing disclosures requires the removal of information. This, however, might harm
legitimate data analysis. Sanitization approaches attempt to resolve this trade-off by
leaving certain useful traits intact. An overview of methods can be found in [64]. This
section summarizes only those on which the algorithms presented in Section 4 are based
on.
Generalization [55] increases the ambiguity of quasi-identifier value combinations by

replacing their values with less specific ones. For instance, the age 81 may be changed
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to elder. A related method is cell suppression [17], which erases values leaking too much
information. It can be interpreted as maximal generalization [58]. Both methods are
frequently used to enforce syntactic privacy models [9, 11, 30, 41, 42, 58]. A key advantage
is that they are ‘truthful’ [58] unlike other approaches which introduce random noise to
the data.
Alternatives to generalization in syntactic privacy are microaggregation [21] and ana-

tomization [66]. The former samples the data into subsets of equal size and replaces each
subset with an aggregate statistic such as the mean. Thus, individual records cannot
be observed directly while computations over subsets are still possible. Anatomization
leaves the quasi-identifiers unaltered while introducing ambiguity in the mapping between
quasi-identifiers and sensitive values. Section 4 presents it in more detail.

3 Syntactic Privacy

Syntactic privacy models define that a data set is anonymous if it satisfies some condition.
These conditions depend only on the data set, its structure and symbols. An alternative
is provided by differential privacy [26] which relies on random perturbation instead.
This section presents selected syntactic privacy models, their assumptions and attacks

on them. Further models are found in survey articles such as [62, 71, 72].

3.1 Attacker Model

Syntactic privacy models assume a passive adversary who has obtained some released
data sets and attempt a disclosure. They also have a list of targeted individuals and their
quasi-identifier values.
The development of syntactic privacy was driven by refinements of attacker models.

Where past restrictions and assumptions were deemed inappropriate, new disclosure types
and background information was taken into account. This led to the discovery of novel
attacks and the proposal of new privacy models.
The following subsections summarize these developments along two lines of research.

One considers a scenario where a single data set is released and refines the disclosure types
which are considered. This sequence focuses on increasing the attacker model’s strength.
The other line of research studies multiple releases of the same or overlapping data sets.
Similarly to the first line, the assumptions are subsequently relaxed.

3.2 Single Release

The first syntactic privacy model was k-anonymity [59]. It assumes a single release of
data and considers only identity disclosure. A data set is considered sanitized when every
data point’s quasi-identifier is indistinguishable from at least k other records. Thus, the
adversary cannot distinguish their target’s record from at least k−1 other ones, preventing
identity disclosure.
The notion of indistinguishable quasi-identifiers is reused in other models. We formalize

it with the following relation:

Definition 3.1 (Quasi-Identifier Equivalence). Let X be a dataset and xi = (qi,1, ..., qi,m, si)
for i = a, b be two records. Define quasi-identifier equivalence as the relation ≈ such
that
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Alice ✓ × ✓ × ?

Bob × ✓ × × ?

? × ? ?=⇒

✓ × ? ?

✓ × ? ?

✓ × ? ?

× ? × ?

× ? × ?

× ? × ?

Background knowledge

3-anonymous data

Alice ✓ × ✓ ×

Bob × ✓ × ×

Inferred knowledge

excluded

Figure 1: Homogeneity and background knowledge attacks.

xa ≈ xb ⇐⇒
m∧
i=1

qa,i = qb,i.

We also define for some x ∈ X:

[x] = {x′ ∈ X : x ≈ x′}

Observe that ≈ is an equivalence relation. Thus, [x] denotes the equivalence class of a
record x with respect to ≈. This allows us give a formal definition for k-anonymity:

Definition 3.2 (k-Anonymity [59]). A dataset X is k-anonymous if and only if |[x]| ≥
k for all x ∈ X.

It is insufficient to protect from exact attribute disclosure as demonstrated by the
homogeneity and background knowledge attacks [46]. The homogeneity attack occurs if
all records in a target’s equivalence class have the same sensitive value. While identifying
the target’s record is still impossible, inferring its sensitive value is trivial. The background
knowledge attack assumes that the adversary possesses additional information. This might
rule out enough records from the target’s equivalence class to enable a homogeneity attack.
Figure 1 shows an example of these attacks. For simplicity, quasi-identifiers are depicted

as binary attributes and sensitive values as coloured shapes. Some quasi-identifiers have
been suppressed to achieve 3-anonymity. Yet, Alice’s record is subject to a homogeneity
attack. In Bob’s case, the adversary knows that an amber square contradicts Bob’s quasi-
identifier.
To overcome these weaknesses, l-diversity [46] was proposed. It requires that each

equivalence class contains at least l ‘well-represented’ sensitive values. There are multiple
definitions [46, 66] differing in how the term ‘well-represented’ is formalized. All of them
prevent homogeneity attacks and render background knowledge attacks unlikely for a
sufficiently large l.

Definition 3.3 (Simple l-Diversity [16, 65, 66]). Let l ∈ N, l > 1 and X be a dataset. Let
ϕ(s, [x]) be the relative frequency of a sensitive value s in the equivalence class [x]. Let
ŝ = argmaxs ϕ(s, [x]) be the sensitive value with maximum relative frequency in [x]. An
equivalence class [x] ⊆ X is simple l-diverse if and only if ŝ ≤ 1

l
. X is simple l-diverse

if and only if all contained equivalence classes are simple l-diverse.
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Alice ✓ × ✓ × ?

✓ × ? ?

✓ × ? ?

✓ × ? ?

Alice ✓ × ✓ ×

A priori estimate

3-anonymous data

A posteriori estimate

Figure 2: Similarity attack on 3-anonymous data.

× ? × ?

× ? × ?

× ? × ?

Prior estimate
(distribution in entire table)

3-anonymous data Posterior estimate

Figure 3: Skewness attack on 3-anonymous data.

Note that simple l-diversity implies l-anonymity: Any ϕ(s, [x]) is bounded by 1
l
. With

ϕ being a distribution, all ϕ(s, [x]) must sum to 1. Thus, at least l different sensitive
values s must appear in [x]. Similar proofs exist for other definitions of l-diversity [46].
The similarity and skewness attacks [43] prove that l-diversity does not prevent approx-

imate attribute disclosure. The similarity attack is a conceptual cousin of the homogeneity
attack: If all sensitive values in an equivalence class have a shared meaning, this common
piece of information is revealed to the adversary. Figure 2 provides an example. While
the attacker does not learn Alice’s exact sensitive value, they infer that it is some coloured
diamond.
The skewness attack exploits differences in the sensitive value distribution. It assumes

that the adversary uses the entire data set to estimate probabilities of all sensitive values.
If the sensitive value distribution in a group of indistinguishable records differs from the
global distribution, an adversary can refine their estimates. Figure 3 shows an example.
Imagine that a diamond corresponds to a lethal disease. While only one out of nine
patients suffer from it in the overall table, the chances for the depicted equivalence class
are one in three. Thus, if an adversary links their target to this equivalence class, their
belief that the target has the lethal diagnosis triples. This constitutes a knowledge gain
about the target.
A solution is provided by t-closeness [43]. It bounds the difference between these sens-

itive value distributions and thus the adversary’s knowledge gain. This difference is meas-
ured through the Earth Mover’s Distance [54]. Intuitively, it tells how much probability
mass must be moved to make both distributions equal.

Definition 3.4 (t-closeness [43]). Let t ∈ R, 0 ≤ t ≤ 1 and X be a dataset. An equivalence
class [x] ⊆ X satisfies t-closeness if and only if

d((ϕ(s, [x]), ϕ(s,X) ≤ t

where d is the Earth Mover’s Distance and ϕ(s,X) the relative frequency of a sensitive
value s in the overall table X. X is t-close if and only if all contained equivalence classes
[x] ⊆ X are t-close.
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Unlike l-diversity, t-closeness does not imply k-anonymity [43]. Therefore, both must
be enforced in practical applications.
It has been observed by Cao and Karras [10] that t-closeness takes only the absolute

knowledge gain of an adversary into account: The negligence of relative gains originates
from the Earth Mover’s Distance. In response, Cao and Karras proposed β-likeness [10].
Intuitively, it bounds the relative difference of empirical sensitive value distributions below
a threshold β. However, if a value appears frequently in the overall table, this bound
becomes meaningless. Thus, they enhanced their definition to use a logarithmic bound in
these cases.

Definition 3.5 (Enhanced β-Likeness [10]). Let β ∈ R, β > 0 and X be a dataset. An
equivalence class [x] ⊆ X satisfies β-likeness if and only if for all sensitive values s

ϕ(s, [x])− ϕ(s,X)

ϕ(s,X)
≤ min{β,− ln(ϕ(s,X))}

X satisfies β-likeness if and only if all contained equivalence classes are β-alike.

Above models assume that the adversary knows that their target’s data point is con-
tained in the released data set. Thus, no protection from membership disclosure is
provided. An extension of k-anonymity and l-diversity to incorporate this protection
is δ-presence [48]. It bounds the adversary’s confidence whether an individual’s record is
contained in the data set. Both upper and lower bounds are provided to protect from
positive and negative membership disclosure. We omit its definition here for brevity.
These attacks and improved models utilize different definitions of disclosure and as-

sumptions on the adversary’s background knowledge. While k-anonymity considers only
identity disclosure, l-diversity, t-closeness and β-likeness protect from attribute disclos-
ure. In contrast, δ-presence takes also membership disclosure into account. The assumed
disclosure definitions vary in whether the adversary’s knowledge gain has must lead to
certainty, an absolute increase above a threshold value or a relative one. Another differ-
ence in assumptions concerns the adversary’s background knowledge: They may be able
to rule out certain sensitive values or learn from the released data.

3.3 Multiple Data Releases

k-anonymity assumes that data is only released once. However, there might be multiple
releases of overlapping data sets. Three scenarios are distinguished by [30]:

• the multi-purpose publishing scenario, where the same unaltered data set is released
multiple times for different purposes,

• the publishing scenario, where subsequent releases contain new data points, and

• the update scenario, which extends publishing by also allowing deletions.

All three scenarios assume that the data set is maintained and released by the same
entity. [32] introduces a fourth scenario, independent releases, where different parties
release overlapping data sets independently of each other. Thus, not every previous
release might be known when data is sanitized.
In all scenarios, there is a causal dependency between releases. It has been formalized

as correspondence [30]: All released records belonging to the same individual must have
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✓ ? × ?

✓ ? × ?

? ✓ × ?

? ✓ × ?

? × ? ✓

? × ? ✓

? ✓ × ?

? ✓ × ?

? ✓ × ?

? × ? ✓

✓ × × ✓

✓ ✓ × ?

? ✓ × ?

? ✓ × ?

Alice × ✓ × ✓ ? added in 1

Bob ✓ ✓ × × ? added in 1

Charlie ✓ ✓ × ✓ ? added in 1

Dave ✓ × × ✓ ? added in 1

Eve × × × ✓ ? added in 2

Release 1 Release 2 Inferred knowledge

Background knowledge

Figure 4: Composition attacks on two 2-diverse releases.

the same sensitive value and their quasi-identifiers are derived from the same raw data
point. Furthermore, there must be exactly one sanitized record in every release containing
a given raw data point.
While traditional syntactic privacy models such as k-anonymity or l-diversity ensure

indistinguishability in single data sets, this dependency allows linking records over mul-
tiple releases. If the sanitization differs between releases or if data points are added or
removed, candidates can be ruled out. This increases the adversary’s confidence in the
remaining options and can lead to a disclosure.
Figure 4 provides some examples. While both releases are 2-diverse, the correspondence

knowledge enables inferences. Eve must have the red diamond because this record has
no corresponding partner in the first release. Dave’s quasi-identifier can be reconstructed
entirely due to differences in sanitization. In Charlie’s case, the differences reveal enough
information to single-out her record. Only Bob’s and Alice’s records maintain ambiguity.
Attacks exploiting correspondence have been called correspondence attacks [30]. More

generally, the term composition attacks [32] is used for attacks relying on multiple releases.
Table 2 provides an overview of the composition attacks presented in this section. It maps
them to the attacked privacy model and release scenario.
The threat of such links between releases was already noted when k-anonymity was

introduced: Sweeney [59] observed that identity disclosure is possible if linking is un-
ambiguous. She argued that subsequent releases must treat all attributes appearing in
previous releases as quasi-identifiers. However, this increases information loss.
A refined solution for the multi-purpose publishing scenario was proposed in [63]. They

extended k-anonymity and l-diversity to (X, Y )-privacy, which ensures an ambiguous join
between different data views. It is achieved by generalizing attributes appearing in more
than one release. Previously released tables do not have to be altered.
The publishing scenario was first studied by Byun et al. [9]. They identify several cases

in which an adversary can eliminate records and thus threaten privacy. The proposed
solution is to delay insertions until none of these cases occurs. However, this might delay
insertions indefinitely. Furthermore, their solution requires that information about all

8



Table 2: Studies on the behaviour of syntactic privacy models in different release scenarios.

Scenario k-anonymity l-diversity both

multi-purpose [63]
publishing [59], [51], [30] [9]
update [67], [35]
independent release [32]

previous releases is stored.
An alternative approach is investigated in [51]. The authors argue that linking all re-

leases of the same record is important for data analysis. Consequently, their approach
assigns a unique pseudonym to every record to make correspondence unambiguous. Us-
ing these assumptions, they identify privacy-breaching cases where differences in gen-
eralization reveal information about the raw quasi-identifier values. This threatens k-
anonymity’s promise of k indistinguishable records. They argue that these precarious
cases can be avoided when composing new releases. However, their solution assumes that
the adversary does not know when each record has been added.
The shortcomings of [9] and [51] are overcome in [30]. Again, potentially privacy-

breaching cases are identified and avoided. The assumptions in [51], unambiguous cor-
respondence and the adversary’s ignorance of insertion timestamps, are dropped. Their
proposed solution, the syntactic privacy model BCF -anonymity, extends k-anonymity by
ensuring ambiguous linking of releases. Unlike [9], its algorithm depends only on the last
release and inserts new data points immediately.
[67] investigates the update scenario. The authors observe that deletions can leak

information: If a candidate sensitive value disappears while the target’s record is still
known to be within the data, the adversary can rule out associated candidate records. To
avoid this, they extended l-diversity to m-invariance:

Definition 3.6 (m-invariance [67]). Let X1, ..., Xn be a series of datasets and m ∈ N {0}.
Define the signature S([x]) of an equivalence class [x] ⊆ Xi as the set of sensitive values
appearing in [x]:

S([x]) = {s : ∃(q1, ..., qp, s) ∈ [x]}.

Xi is m-unique if and only if |[x]| = |S([x])| ≥ m for all equivalence classes [x] ⊆ Xi

The series X1, ..., Xn is m-invariant if and only if

1. Xi is m-unique for all 1 ≤ i ≤ n and

2. S([xi]) = ... = S([xj]) for all data points xi ∈ Xi, ..., xj ∈ Xj which describe the
same individual.

The definition implies two properties. Firstly, m-uniqueness requires that every equi-
valence class contains at least m different sensitive values. Thus, m-invariance implies
m-diversity. Secondly, the definition requires that all equivalence classes in which an
individual’s record appears over time contain the same sensitive values. This requires
the replacement of deleted data points by either newly inserted ones or artificial records
when no suitable insertion took place [67]. Consequently, m-invariance sacrifices syntactic
privacy’s tenet of truthfulness.
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Alice ✓ × ✓ × ?

✓ × ? ?

✓ × ? ?

✓ × ? ?

× ? ✓ ?

× ? ✓ ?

× ? ✓ ?

? × ? ×

? × ? ×

? × ? ×

? ✓ × ?

? ✓ × ?

? ✓ × ?

Alice ✓ × ✓ ×

Background knowledge

Release 1 Release 2

Inferred knowledge

Figure 5: Intersection attack on 3-diverse releases.

Another disadvantage is that m-invariance is susceptible to equivalence attacks [35].
The adversary is assumed to know when each record was added and deleted. In some
situations, this allows them to infer which new inserted data point replaced a deleted
one. Consequently, both records must share the same sensitive value and a new causal
dependency can be exploited.
Independent releases are studied by Ganta, Kasiviswanathan and Smith [32]. The afore-

mentioned protective measures are inapplicable here because not every previous release
is known at the time of sanitization. Ganta, Kasiviswanathan and Smith introduces the
intersection attack to show how vulnerable syntactic privacy models are in this setting. It
affects most syntactic privacy models including k-anonymity, l-diversity and t-closeness.
Figure 5 provides an example. An adversary can identify a group of records known

to contain their target in every release using the known quasi-identifier. The target’s
sensitive value must appear in every group. Therefore, the set of candidate values can be
reduces to the intersection of candidate values in every release. In Alice’s case, only the
red diamond satisfies this condition and thus her sensitive value is disclosed.
The intersection attack was demonstrated on a real-life data set by [14]. While a

countermeasure was proposed in [5], it relies on cooperating data publishers and entails
severe loss of information.
The release scenarios expand the assumptions required by syntactic privacy. The de-

scribed attacks and countermeasures also assume different definitions of disclosure. For
instance, intersection attacks only consider attribute disclosure, thus the protection mech-
anism proposed in [5] might still be susceptible to the identity disclosure attacks described
in [30]. To the best of our knowledge, the applicability of all discovered composition at-
tacks to syntactic privacy models has not been thoroughly evaluated. Finally, the attacks
and proposed countermeasures also make different assumptions regarding the adversary’s
background knowledge.

3.4 Remaining Shortcomings

Syntactic privacy is subject to shortcomings other than those discussed above. These
problems are presented in the following.

3.4.1 Utility Problems

Several studies have reported problems concerning the analytical value of data which was
sanitized according to syntactic privacy models. Firstly, the gain of privacy offered by
k-anonymity, l-diversity and t-closeness comes with a high loss of data mining utility [8].
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Secondly, the information loss is especially pronounced for l-diversity on skewed data sets
[46]. Intuitively, the lack of diversity requires more generalization. Thirdly, syntactic
privacy is affected by the curse of high-dimensionality [1]. Essentially, the number of data
points required to maintain the same density in data space for an increasing number of
attributes grows exponentially. In other words, the records which are made indistinguish-
able by the sanitization algorithm are increasingly dissimilar. The resulting information
loss renders syntactic privacy unsuitable for high-dimensional data sets.

3.4.2 Limited Data Model

Syntactic privacy models assume a split between quasi-identifiers and sensitive records.
This limits their application to tabular data. Unstructured data such as images or time-
series data is not supported. Furthermore, only finite data sets are considered. Infinite
data streams can be incorporated by splitting them into multiple releases as in the pub-
lishing scenario. However, this solution delays the publication of new data points until
the next release, hence it is unsuitable for real-time applications where new data points
have to be released immediately. Both unstructured data and real-time applications are
becoming increasingly relevant due to developments such as ubiquitous computing and
the internet of things.
Another problem concerns the classification of attributes into quasi-identifiers and sens-

itive attributes. It depends on the context, culture and individual [7]. For instance, a
recurring example of a sensitive attribute in syntactic privacy research is salary [15, 37,
43, 66]. Yet, the salary can be considered public knowledge in Sweden and Norway. Both
countries publish the tax records of their residents, which allows estimating an individual’s
salary [24].

3.4.3 Questionable Assumptions

Even when the separation between quasi-identifiers and sensitive attributes is clear, syn-
tactic privacy relies on other questionable assumptions. They concern the adversary’s
background knowledge and how a disclosure is defined. For instance, k-anonymity only
prevents identity disclosure in the single-release scenario if the adversary’s knowledge is
limited to quasi-identifier values. Violations of these assumptions enable for instance
homogeneity, composition or skewness attacks as described above. Relaxations of these
assumptions have led to new syntactic models such as l-diversity, m-invariance or t-
closeness. However, the interactions between the assumptions are not well understood.
For instance, no publication extending t-closeness, β-likeness or δ-presence to a multiple
release scenario has been found during our literature research. Similarly, BCF -anonymity,
m-invariance and (X, Y )-privacy do not incorporate the refined approximate disclosure
definitions embodied in t-closeness and β-likeness.
Another problematic assumption concerning the privacy promises was identified by

Kifer [36]. Syntactic privacy models guarantee that the probability of a successful dis-
closure does not exceed a threshold value. However, calculating these probabilities relies
on an assumed reasoning model. More precisely, the adversary’s a priori distribution
over potential raw data sets must be assumed. When the adversary observes the released
data, they determine the set of records indistinguishable to their target. The resulting a
posteriori distribution is calculated from these records and the a priori distribution.
Kifer observed that the majority of models, for instance k-anonymity, l-diversity, t-

closeness or m-invariance, use the random worlds model [4], which assumes a uniform
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distribution. Thus, any record which might belong to a given target is assumed to be
equally likely to be the target’s real record. Kifer argues that this reasoning is not sound
because an adversary can learn correlations from the released data to improve their es-
timates. For example, a 2-anonymous data set might link a known smoker to two records,
which reveal that the person has either lung cancer or is healthy. Under the random worlds
model, both options are considered equally likely. However, the adversary might learn a
correlation between smoking and lung cancer from the entire published data set. This
can shift the confidence of the adversary’s predictions for individuals above the threshold
promised by the syntactic privacy model, leading to approximate attribute disclosure.
The attack has been called DeFinetti attack by Kifer. [36]
The applicability of these assumptions must be verified before syntactic privacy can be

applied. Any mistake or oversight can result in privacy breaches. Consequently, syntactic
privacy is a complex and fragile concept.

3.4.4 Attacks on Algorithms

There is also a line of research concerning attacks on sanitization algorithms. It was
initiated by [65] and [70] independently of each other. Both research groups observed
that minimizing information loss leaks information about the raw data. Intuitively, the
adversary can determine that if an algorithm produced the observed sanitized table, any
further partitioning of the data set would have violated the syntactic privacy model. This
can be combined with the knowledge of raw quasi-identifier values to deduce possible raw
data sets. If no option maps a sensitive value to a record, negative attribute disclosure
occurs and the adversary’s confidence in the remaining options increases. This attack was
called minimality attack in [65]. A similar but less general description is provided in [70].
The minimality attack and its preconditions were formalized and further studied by [16].

They noticed that the attack relies on an asymmetric partitioning of the data and affects
only the smaller subset. Therefore, the attack can be mitigated by restricting algorithms
to roughly equally sized partitions. Another proposed countermeasures is generalizing
the data more than necessary at the expense of data utility [65]. While k-anonymity is
immune to minimality attacks because they rely on constraints on the sensitive value sets,
an extension, the downcoding attack [14], removes this restriction.

3.4.5 Lack of Desired Properties

Kifer and Lin have proposed [39] and refined [38] two privacy axioms: transformation
invariance and convexity, which is also called privacy axiom of choice in their first paper.
While they provide formal definitions, we paraphrase them here informally for simplicity.
Transformation invariance states that applying an arbitrary computation onto a sanit-
ized data set must not compromise the privacy guarantees of the chosen privacy model.
This ensures that anonymity cannot be breached by post-processing the data. Convexity
requires that algorithms satisfying the privacy model can be selected for anonymization
without a dependency on the input data. This ensures that anonymization algorithms
are exchangeable. Kifer and Lin argue that syntactic privacy models, unlike differential
privacy, do not satisfy these axioms.
A third axiom called secure composition was introduced by Ganta, Kasiviswanathan

and Smith [32]. A privacy model composes securely when its privacy guarantee holds in
an independent release scenario. The composition attacks presented in Section 3.3 show
that syntactic privacy models do not satisfy this property.
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4 Algorithms

This section presents selected algorithms achieving syntactic privacy. They have been
chosen to outline different approaches and the historical development. More information
on algorithms can be found in survey articles such as [13, 31, 69, 71].
Most algorithms achieving k-anonymity rely on generalizing the quasi-identifiers of data

points. This makes records more similar to each other and thus increases indistinguishab-
ility. When observing the equivalence classes, generalization also increases the number
of contained sensitive values [46] and moves their distribution towards the distribution in
the overall table [43]. Therefore, the generalization algorithms for k-anonymity can be
adapted to ensure l-diversity and t-closeness.
Note that generalization removes information from the data. Thus, algorithms which

achieve a syntactic privacy model with minimal information loss are desired. A first proof-
of-concept algorithm was proposed in [58]. It considers all possible generalizations of the
input data set and outputs the optimal one. The set of eligible generalizations has to be
specified by the user.
While this exhaustive approach is unsuitable for practice, improved algorithms have

been proposed. One example is Incognito [42]. It exploits that once a k-anonymous
sanitization is found, further generalizations only remove more information and thus do
not have to be considered.
It was proven that the problem of optimal generalization is NP-hard [47]. Some al-

gorithms such as Incognito [42] address this by increasing the granularity of generaliz-
ations, which decreases the number of steps the algorithm must execute, however, they
still have an exponential worst-case run-time. Another approach is taken by approximate
algorithms. They relax the guarantee of minimal information loss to improve performance.
One example of an approximate algorithm is Mondrian [41]. Unlike the aforementioned

algorithms, which generalize the data first and then derive the partitioning of data into
indistinguishable groups, Mondrian partitions the data first and then derives the required
generalization. This removes the dependency to user-specified generalization descriptions.
Mondrian achieves this by splitting the data recursively at the median until no subset can
be split without violating the chosen syntactic privacy model. The quasi-identifier of
every subset is then replaced by the multi-dimensional interval defined by the previous
splits.
While Incognito and Mondrian can be modified to support l-diversity and t-closeness,

dedicated algorithms for these models have also been proposed. An example for l-diversity
is SABRE [11]. Its experimental evaluation shows that it offers both increased perform-
ance and decreased information loss when compared to a Mondrian adaption. Most
variations and extensions of k-anonymity, l-diversity and t-closeness which have been
proposed in the literature are accompanied by a dedicated algorithm, for instance [10, 30,
67].
While most algorithms rely on generalization, alternatives have also been explored. A

clustering-based approach is described in [3]. Microaggregation has been applied by [2]
and [23]. Similar to Mondrian, these algorithms create a partitioning of the input data.
The quasi-identifiers are then replaced by a summary statistic such as the mean or the
minimum and maximum values.
A unique interpretation of l-diversity is found in Anatomy [66]. It leaves the quasi-

identifiers unaltered. Thus, no protection from identity disclosure is offered. Instead, the
sensitive values are separated from the quasi-identifiers. Groups of records are created
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such that all records from the same group have an ambiguous mapping between their
quasi-identifiers and their sensitive values. Essentially, the sensitive value is replaced
by the set of all sensitive values appearing in a record’s group. Anatomy protects from
attribute disclosure by ensuring that this sensitive value set is l-diverse.

5 Implementations

Our objective was to identify existing implementations of syntactic privacy algorithms
which can be integrated into a benchmarking platform for data privacy solutions. Im-
plementations have been collected from a survey article [34] and websites: A list of tools
related to the implementation ARX1 and software recommendations by the Johns Hop-
kins University2. The results were supplemented by a web search on anonymization tools
and software packages. The following selection criteria have been applied:

• The software must be available as a library or command-line tool so that it can be
executed fully automatically. UI-based tools require manual input and hence are at
most semi-automatic.

• It must be licensed using an open source licence and the source code must be avail-
able. Otherwise, adaptions and extension of the implementation are not possible.

• At least the three traditional syntactic privacy models k-anonymity, l-diversity and
t-closeness have to be supported. They do not have to be implemented as long as
the available algorithms can be adapted (e.g. Incognito or Mondrian).

• The software must be relatively mature. Some encountered implementations were
only research prototypes and not designed for actual use.

The excluded results are shown in Tables 3. Four implementations are UI-based tools
requiring manual input from a user. The source code or binary distributions could not be
located for six solutions. In these cases, neither the links provided in the aforementioned
surveys nor a supplementary web search yielded a working download. Two implementa-
tions support only k-anonymity. The remaining three are immature research prototypes.
Two of them are also missing a licence.
Three implementations remained after these exclusions. They are presented in Table

4. All of them are open source tools. Anonypy [29] and Mondrian py [33] are Python
implementations of Mondrian. The former has superior maintainability and already im-
plements k-anonymity, l-diversity and t-closeness. Unlike the latter, it uses well-tested
Python packages such as pandas instead of providing own implementations.
An alternative is ARX [53]. It is a mature and well-tested Java application, which

can be used as both a UI-based tool and as a Java library. Like Anonypy, k-anonymity,
l-diversity and t-closeness are offered. While Java cannot be integrated directly into the
Python-based platform under development, the library could be used to implement a back-
end service invoked by Python scripts. This trades development effort and performance
for maturity.

1https://arx.deidentifier.org/overview/related-software/ (visited on 2023-08-14)
2https://dataservices.library.jhu.edu/resources/applications-to-assist-in-de-

identification-of-human-subjects-research-data (visited on 2023-08-14)
3The link https://cs.utdallas.edu/dspl/cgi-bin/toolbox/ is broken as of August 2023.
4The link http://www.privacyanalytics.ca/software/parat/ is broken as of August 2023.
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Table 3: Excluded implementations

Implementation Reason for Exclusion

µ-Argus [49] UI-based tool
τ -Argus [50] UI-based tool
Cornell Anonymization Toolkit [68] UI-based tool
ANON [12] UI-based tool
UTD Anonymization Toolbox3 unavailable
PARAT4 unavailable
PPSF [45] unavailable
TIAMAT [18] unavailable
SECRETA [52] unavailable
Anon-Tool [25] unavailable
Amnesia [22] only k-anonymity
prioprivacy [6] only k-anonymity, research prototype
µ-ANT [56] no licence, research prototype
OpenAnonymizer [57] no licence, research prototype
k-Anon-Tool [61] student semester project

Table 4: Remaining implementations

Implementation Language License Notes

ARX [53] Java Apache-2.0 mature
Anonypy [29] Python MIT Mondrian
Mondrian py [33] Python MIT Mondrian, bad code quality

15



6 Conclusion

This report has reviewed the research on syntactic privacy models. While these models
may appear simple and intuitive at first glance, they rely on inherent assumptions which
must be checked before their use. If any of these assumptions is violated, privacy breaches
may be possible. However, several assumptions cannot be controlled by users of syntactic
privacy, for instance which background knowledge an attacker possesses or whether in-
dependent parties will release an overlapping data set in the future. Hence, syntactic
privacy offers highly fragile privacy guarantees at best. Furthermore, selecting an appro-
priate metric remains a complex task. Other problems of syntactic privacy concern their
restriction to tabular data, lack of analytical value and the violation of privacy axioms.
In contrast, differential privacy [26] provides desirable guarantees and properties. While

syntactic privacy mostly ignores membership disclosure, differential privacy bounds the
probability of both positive and negative membership disclosure [26]. This uncertainty
extends to identity and attribute disclosures. Differential privacy also offers transforma-
tion invariance and complexity [39]. While it does not offer secure composition according
to the definition in [32], it bounds the privacy decrease linearly [28].
However, differential privacy also has its shortcomings. Firstly, it requires the intro-

duction of random noise [27], which impacts data utility. Secondly, differential privacy
is a property of algorithms instead of data sets [27]. This requires that a trusted party
holds the data to execute these algorithms. Thirdly, differential privacy must be proven
for every new algorithm [26].
To summarize, the evolution of syntactic privacy was driven by identifying attacks and

shortcomings, followed by solution proposals and fixes. However, no robust mathemat-
ical foundation has been developed. Furthermore, the assumptions were not investigated
thoroughly, resulting in fragile privacy definitions. Differential privacy takes a different
approach: Starting from a provable privacy guarantee with known assumptions, its im-
plications, properties and possible use cases are derived.
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