
Towards Developing Resilient and Service-oriented
Mission-critical Systems
Doğanalp Ergenç, Cornelia Brülhart, Mathias Fischer

University of Hamburg, Germany
name.surname@uni-hamburg.de

Abstract—Mission-critical systems (MCSs) have embraced new
design paradigms such as service-oriented architecture (SOA)
and IEEE 802.1 Time-sensitive Networking (TSN). These ap-
proaches tackle the static and closed-loop design and configura-
tion of MCSs to address their strict performance and resilience
requirements. While SOA enables the dynamic placement of
critical services over virtualized hardware, TSN provides several
protocols to establish deterministic communication over standard
Ethernet equipment. This paper presents a prototype combining
SOA and TSN to design flexible and fault-tolerant MCSs. It
demonstrates the benefits of dynamic service migration and
time-sensitive redundancy protocols to increase the resilience of
MCSs against node and link failures, respectively. Moreover, it
presents additional advanced functionalities like optimal service
distribution and security monitoring for new TSN protocols.

Index Terms—Service-oriented architecture, IEEE 802.1 Time-
sensitive Networking, resilience

I. INTRODUCTION

Mission-critical systems (MCSs) such as automobiles and
avionics should be resilient against faults and attacks while
also fulfilling strict quality of service (QoS) requirements.
They feature tightly coupled hardware and software modules
and a closed-loop architecture, which strictly limits modifica-
tions and updates in their design and (re-)configuration. As
a result, these systems are usually static and do not support
dynamic adaptation, which can help to recover from faults and
attacks. Therefore, MCSs have adopted new paradigms such
as service-oriented architecture (SOA) and IEEE 802.1 Time-
sensitive Networking (TSN), enabling flexible configuration
and advanced resilience countermeasures.

SOA is a network softwarization approach that enables
developing modular services, which can be dynamically dis-
tributed over virtualized systems [1]–[3]. Another emerging
technology, IEEE 802.1 TSN, provides networking proto-
cols for time-sensitive communication over standard Ethernet
equipment [4]. It also offers policing, filtering, and redundancy
mechanisms for the safety and security of MCSs, as well as
reduces their deployment and maintenance costs. Nevertheless,
implementing novel technologies poses additional challenges,
as they introduce additional complexity and potentially new
safety and security threats.

In this paper, we develop a prototype combining SOA and
IEEE 802.1 TSN protocols to investigate the novel design
artifacts of next-generation MCSs. To the best of our knowl-
edge, this is the first prototype combining these technologies
and primarily focusing on their benefits for design flexibility

and fault tolerance. Then, we demonstrate several scenarios
regarding the optimal configuration, and the secure and fault-
tolerant orchestration of this prototype. Our contributions are
listed as follows.
• We have implemented virtualized system nodes and a

supervisor capable of service orchestration and failover
mechanisms to design a fault-tolerant SOA for MCSs.

• We demonstrate the benefits of SOA and TSN against node
and link failures.

• We also introduce advanced features such as resource-
optimal service distribution, status monitoring of services,
and security monitoring for TSN traffic.

In the following, Section II presents an overview of our system
architecture enabling SOA. Section III presents our prototype
and demonstration scenarios. Section IV concludes the paper.

II. SYSTEM ARCHITECTURE

This section gives an overview of our system architec-
ture, which constitutes a service-oriented and time-sensitive
network. It also presents the primary components we imple-
mented and describes their interconnectivity.

A. System Overview

In our model, a service-oriented MCS consists of virtualized
nodes (VNodes) inter-connected with TSN bridges that enable
TSN protocols for time-sensitive communication. Fig. 1 illus-
trates an example architecture. In the figure, each VNode hosts
a critical and a non-critical domain to isolate mixed-criticality
services from each other. They are connected via TSN
bridges (TSN1-TSN3). The services (S1-S11) are distributed
to VNodes by a supervisor (in the middle) regarding their
resource requirements. This supervisor can also configure TSN
bridges to establish interconnectivity between services. For
instance, for connecting critical services S3 and S9 (between
VNode 1 and 3), it could reserve sufficient bandwidth and
schedule time-sensitive streams over TSN1-TSN2-TSN3 and
TSN1-TSN3, where the latter is a redundant path against link
failures. At the same, non-critical services might communicate
without strict quality of services (QoS) requirements. For
that, TSN protocols enable the coexistence of mixed-criticality
streams on unified networking equipment and establish proper
resource provision for end-to-end communication.

Moreover, the service-based design allows dynamic recon-
figuration of services in case of node failures. For example,
in Fig. 1, a redundant S3 (dashed) instance is deployed at

ar
X

iv
:2

30
4.

00
12

8v
1

 [
cs

.N
I]

 3
1

M
ar

 2
02

3

S3

TSN 1

TSN 2

TSN 3

VNode 1

Critical
Domain

Non-crit.
Domain

S1 S2 S3 S4 S5
VNode 3

Critical
Domain

Non-crit.
Domain

S8 S9 S1
0

VNode 2

Critical
Domain

Non-crit.
Domain

S6 S7

Supervision &
Monitoring

S1
1Redundant path(s)

Backup path

Fig. 1. A service-oriented MCS with virtualized nodes and TSN bridges.

VNode 2. In case of a failure at VNode 1, which hosts the
primary S3 instance, the redundant one can be activated by
the supervisor. Besides, the remaining services at VNode 1
could also be migrated to other nodes with available resources.
A monitoring component (in the middle, integrated into the
supervisor) is required to detect such incidents and assist the
supervisor in taking necessary actions.

B. System Components

We design and implement two main components in the
system architecture shown in Fig. II: Supervisor and VNode.

1) Virtual Node (VNode) hosts two isolated domains over
a hypervisor for critical and non-critical services. These
domains are maintained by the domain manager. Each
domain further hosts their virtual services in containers and
has a container manager for maintaining services.
• Domain Manager (DM) implements functions to create,

remove, and monitor domains and tracks the resource
usage for the respective VNode. It further communicates
with the container manager(s) of both domains to regu-
late service-related operations.

• Container Manager (CM) provides an interface to
create, remove, deploy, and execute services as virtual
containers. It is also responsible for the status monitoring
of those services.

Note that VNodes utilize nested virtualization, i.e., virtual
domains also host virtual containers using different virtu-
alization technologies described later.

2) Supervisor commands to VNodes to create, remove, and
migrate the domains and containers, i.e., services, and thus
is responsible for service supervision over the network. It
consists of three modules.
• Controller provides the interface to access to VNodes

in the system to perform domain and service-related
operations remotely. It regularly collects heartbeats from
VNodes, including their local status, e.g., resource usage
and status of hosted services.

• Distribution Manager (DTM) takes the required system
services regarding their resource and intercommunica-
tion requirements as input, DTM decides on (i) at which
VNodes the respective services can be hosted and (ii)
on which network paths they can communicate. The

supervisor then uses the controller interface to configure
VNodes according to this decision.

• Failure Manager (FM) compares the local status of
VNodes gathered by the controller with the global
system information of the supervisor. If it detects an
inconsistency, e.g., an offline domain or failed service,
it specifies the required service migrations and reinitia-
tions to ensure service availability. The supervisor then
reconfigures VNodes accordingly.

We use Xen hypervisor1 to host virtual domains over
VNodes since it is open-source and already takes place in
critical domains. Furthermore, we use open-source Linux con-
tainers (LXC)2 for the virtual container that encapsulates the
services as it provides a minimum overhead. We implemented
all managers from scratch using Python v3.5.

C. Interconnectivity

The supervisor collects periodical heartbeats from VNodes.
For this, the controller module maintains remote procedure
call (RPC) channels to the DMs of each VNode. RPC provides
dedicated, unicast, and confidential channels that can be easily
tracked. Using the same channel, it also sends all domain
or service-related requests, such as atomic domain or service
creating and removing calls or multiple requests to perform a
service migration. We use gRPC3 to implement these channels.

Apart from that, VNodes communicate over TSN bridges
using TSN protocols. Among several protocols, IEEE
802.1CB Frame Replication and Elimination for Redun-
dancy (FRER) [5] enables redundant communication via dis-
joint paths against link failures, similar to shown in Fig. 1.
Since we focus on fault tolerance scenarios, we configure
FRER for inter-service communication. Moreover, the mon-
itoring component analyzes time-sensitive traffic to ensure the
configured and deterministic communication behavior.

III. PROTOTYPE AND DEMONSTRATION

This section describes our prototype and demonstration
scenarios that utilize the components in Section II-B.

A. Prototype Setup

Fig. 2 shows the components in our prototype. It prototype
consists of (i) three RELYUM TSN bridges4 connected in a
ring topology, (ii) three virtualized DELL OptiPlex Mini tow-
ers as VNodes, and (iii) a DELL T140 server as a supervisor
and monitoring component, and (iv) a Raspberry Pi board as
an attacker node for the security-related scenarios. The fourth
server is not visible in the photo but is roughly similar to
the servers shown. The red and blue cables are for VNode-
to-bridge and bridge-to-bridge connections, respectively. The
supervisor and the attacker node are connected via grey cables.
We set up the same topology shown in Fig. 1. Two VNodes
(VNode 1 and 2) are connected to the first TSN bridge (TSN1,

1Xen Project, https://xenproject.org/
2Linux Containers, https://linuxcontainers.org/
3gRPC, https://grpc.io/
4RELYUM TSN Bridge, https://www.relyum.com/web/rely-tsn-bridge/

Fig. 2. The demonstrator prototype.

on the left in Fig. III), and another one (VNode 3) is attached
to the third TSN bridge (TSN3, on the right in Fig. 2).

The supervisor is connected to the second bridge (TSN2,
at the middle in Fig. 2). Besides, a TSN monitoring mod-
ule (TSNM) is deployed beside the supervisor on the same
server. We developed TSNM in our previous work [6] to
monitor selected TSN protocols, including FRER, and detect
TSN-specific security threats. Note that it is not an internal
component of the supervisor but an independent module.
All nodes also have an attached screen as a part of the
demonstration (two of them excluded from the figure for a
better view).

B. Demonstration Scenarios

In our prototype, we demonstrate four scenarios regarding
(i) automatic service distribution, (ii) service migration against
node failures, (iii) redundancy against link failures, and (iv)
intrusion detection for TSN traffic.
1) Optimal service distribution: The system initially re-

quires the deployment of virtual services on VNodes. In
the first scenario, the supervisor automatically distributes
video streaming and receiving services to VNodes. It uses
our previous optimal service distribution model presented
in [7] or a manual configuration file within the DTM.
It considers limited VNode resources in terms of their
CPU and memory, and the resource requirements of the
respective services for the distribution. As a result, VNode
1 streams a flight instruction video, e.g., assuming the
system represents a flight cabin network, and VNode 3
receives this stream. The communication between these
VNodes is established using IEEE 802.1 FRER over two
redundant paths, i.e., TSN3-TSN2-TSN1 and TSN3-TSN1.
All bridges are manually configured with the MAC ad-
dresses of VNodes for demonstration purposes. In the end,
we observe the video displayed on the screen attached to
VNode 3. Meanwhile, the TSNM logs the FRER traffic
passing through TSN2 shown on its respective screen.

2) Fault tolerance against link failures: We then demon-
strate the benefits of FRER against link failures. We plug
off the Ethernet cable between TSN3 and TSN2 to mimic
a broken link on the path TSN3-TSN2-TSN1. It does not
affect the video streaming, e.g., an interruption or a delay,
since FRER ensures seamless redundancy over the path
TSN3-TSN1. However, the TSNM can no longer log the

FRER traffic since the respective path is unavailable due
to the link failure.

3) Fault tolerance against node failures: In the third sce-
nario, we disconnect VNode3 from the network to demon-
strate a node failure. As a result, the supervisor cannot
receive periodical heartbeats from VNode 3 and triggers
failover via its FM. The FM utilizes a fault-tolerance
heuristic, i.e., selecting a backup VNode with the highest
available resources, to migrate the video receiving service
from VNode 3 to VNode 2 in real time. After a short delay
for starting new containers and deploying the respective
service on VNode 2, we observe the flight instruction video
continues from when VNode 3 fails on the display attached
to VNode 2. We can also follow the TSNM logs with an
alternated MAC address.

4) Intrusion detection for TSN traffic: The last scenario
demonstrates the detection of TSN-specific attacks via the
monitoring module, TSNM. We connect an attacker node
to TSN2 and conduct several FRER-related attacks listed
in [8]. As a result, we observe that the TNSM detects
malicious attempts and raises alerts displayed on the screen.

IV. CONCLUSION

Service-oriented architecture (SOA) and IEEE 802.1 Time-
sensitive Networking (TSN) are two recent paradigms that
ease designing mission-critical systems (MCSs) that typically
consist of dedicated components with static configuration. In
this work, we investigate the integration of these emerging
technologies to build flexible and resilient MCSs. For this,
we implement a prototype with virtualized components and
a supervisor connected with TSN bridges. We demonstrate
several scenarios to show that our design enhances flexi-
bility and adaptability of MCSs to recover them in case
of potential failures via dynamic failovers and redundancy
mechanisms. Additionally, we show that our supervisor and
monitoring module detect service failures and TSN-specific
security threats.

REFERENCES

[1] G. Heiser, “Virtualizing embedded systems - why bother?,” in 48th
ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 901–905,
June 2011.

[2] W. Sim and J. Lee, “End-to-end Connectivity Design with Automotive
Ethernet & Service-oriented Architecture,” in IEEE Standards Association
(IEEE-SA) Ethernet & IP at Automotive Technology Day, 2018.

[3] J. Villaneueva, J. Migge, and N. Navet, “QoS-Predictable SOA on TSN:
Insights from a Case-Study,” in Automotive Ethernet Congress, 2021.

[4] IEEE 802.1 TSN Task Group, “IEEE 802.1 Time-Sensitive Networking
(TSN),” 12 2017.

[5] IEEE 802.1 TSN Task Group, “IEEE Standard for Local and Metropolitan
Area Networks – Frame Replication and Elimination for Reliability
(FRER),” IEEE 802.1CB-2017, 2017.

[6] D. Ergenç, R. Schenderlein, and M. Fischer, “TSNZeek: An Open-
source Intrusion Detection System for Time-sensitive Networking,” arXiv
preprint at https://arxiv.org/abs/2303.11492, 2023.

[7] D. Ergenç, J. Rak, and M. Fischer, “Service-Based Resilience for Embed-
ded IoT Networks,” 50th IEEE/IFIP Int. Conf. on Dependable Systems
and Networks (DSN), 2020.

[8] D. Ergenç, C. Bruelhart, J. Neumann, L. Krueger, and M. Fischer, “On the
Security of IEEE 802.1 Time-Sensitive Networking,” IEEE International
Conference on Communications (ICC), Workshop on Time-sensitive and
Deterministic Networking, 2021.

https://arxiv.org/abs/2303.11492

	I Introduction
	II System Architecture
	II-A System Overview
	II-B System Components
	II-C Interconnectivity

	III Prototype and Demonstration
	III-A Prototype Setup
	III-B Demonstration Scenarios

	IV Conclusion
	References

