
WEBAPPAUTH: An Architecture to Protect From Compromised
First-Party Web Servers

Pascal Wichmann1 a, Sam Ansari1, Hannes Federrath1 and Jens Lindemann1 b

1Universität Hambrug
pascal.wichmann@uni-hamburg.de, sam.ansari@studium.uni-hamburg.de, {hannes.federrath,

jens.lindemann}@uni-hamburg.de

Keywords: Code Authenticity, Web Applications, Client-Side Security, Web Security.

Abstract: We present the WEBAPPAUTH architecture for protecting client-side web applications even from attackers
who fully control the web server. WEBAPPAUTH signs all files sent to the client on a secure offline device
or a hardware security module never accessible by the web server. Public keys are propagated through a key
registry that is maintained by two independent key registration authorities, thus protecting users even on their
first visit to the web application. Our threat model covers attackers who gain full control over the targeted
domain and its DNS and DNSSEC configuration.

1 Introduction

Web applications can implement security mecha-
nisms such as encryption or signature validation in
client-side code. However, the architecture of the web
relies on web servers to provide the client-side code,
thus requiring trust into the authenticity of the code
provided by the web server.

Solutions exist to protect the authenticity of web
assets, such as Transport Layer Security (TLS) for
verification of the server identity and ensuring the
confidentiality of connections, or Subresource In-
tegrity (SRI), which allows to pin external resources
to fixed contents via hashes. However, most of these
solutions do not consider compromised first-party
web servers where an attacker is able to use TLS cer-
tificates valid for the targeted domain or modify re-
sources served by the first-party server.

While such an attacker would have very strong ca-
pabilities, protecting from them is important for sev-
eral types of applications that can still provide suffi-
cient protection if the browser does not execute ma-
nipulated script assets. Examples are end-to-end-
encrypted applications supposed to conceal contents
from the web server where – without protection –
such an attacker could turn off the end-to-end encryp-
tion, or web-based crypto currency wallets, where the
attacker could extract the private keys. Thus, we pro-

a https://orcid.org/0000-0002-8969-4277
b https://orcid.org/0000-0003-0103-2461

pose WEBAPPAUTH, an architecture that provides
protection even if the first-party web server is com-
promised. To provide this protection, we rely on sign-
ing all assets using private keys that are stored and
used at a location inaccessible to the web server, e. g.,
on a device never connected to the Internet.

We assume the party responsible for the applica-
tion (“web application operator”) to be trustworthy.
However, any servers involved in the operation of the
application, including those of the first party, may be
under full control of an attacker.

The remainder of this paper is structured as fol-
lows: In Section 2, we present our architecture, which
we evaluate in Section 3. In Section 4, we discuss the
practicability and limitations of our architecture. Sec-
tion 5 presents related work on the authenticity of web
application code. We conclude our work in Section 6.

2 Architecture

In this section, we describe the architecture of WEB-
APPAUTH. We start by discussing our threat model.
Subsequently, we describe the components of our ar-
chitecture, followed by the deployment and retrieval
of web applications. Lastly, we describe operational
tasks, such as key revocation.

This Paper was presented at SECRYPT 2023. The publisher's version is available at https://doi.org/10.5220/0012141700003555.

https://doi.org/10.5220/0012141700003555
https://secrypt.scitevents.org/?y=2023

2.1 Threat Model

We assume a very strong attacker with full control
over all servers of the targeted web application, in-
cluding first-party servers. Hence, the attacker can
also manipulate all communication between any web
server of the attacked web application and its users.
Alternatively, the attacker may manage to control the
DNS and DNSSEC data of the targeted domain, ob-
tain a valid TLS certificate for it, and redirect traffic
to an own server.

WEBAPPAUTH relies on key registration authori-
ties to manage published public key material. These
authorities are assumed to be trustworthy and outside
of the control of the attacker. The authorities follow
the protocol and do not tamper with the integrity of
the data they are responsible for.

2.2 Components of WEBAPPAUTH

Figure 1 gives an overview of the components of
WEBAPPAUTH. The architecture relies on a web
application key registry (Section 2.2.1), which is
checked by the browser to establish whether a do-
main uses WEBAPPAUTH. The registry is adminis-
tered and published by two key registration authori-
ties (Section 2.2.2). To check a concrete web applica-
tion, the browser further processes a web application
manifest (Section 2.2.3) and individual file signatures
(Section 2.2.4) published by the web server alongside
the application.

2.2.1 Web Application Key Registry

The key registry contains a SHA-256 hash of the pub-
lic key for all web applications that employ WEBAPP-
AUTH. Every registry entry is associated with exactly
one such key. Applications are identified by their do-
main name. The registry entry defines the subdomains
that use WEBAPPAUTH. The entry may be overwrit-
ten by a revocation message and can contain a flag
that marks the entry for deletion at a specific time.

The domain name should be an eTLD+1 name.
It is possible to deploy WEBAPPAUTH for a non-
eTLD+1 subdomain. However, the set of subdomains
covered by two entries may not overlap. This ensures
a single definitive trust source for each application
and prevents operators from keeping old keys in the
registry.

All browsers that support WEBAPPAUTH keep a
verified local copy of the key registry updated at least
daily. This prevents downgrade attacks, i. e., attack-
ers who manage to impersonate a web server cannot
disable WEBAPPAUTH. On every update, the author-
ities provide deltas to every previous registry version

of the past week. Consequently, if browsers have a
current version of the registry that is less than a week
old, they can retrieve a single delta file and the signa-
ture of the new version. The delta files can be applied
in a deterministic way, i. e., always produce a consis-
tent registry file.

Every version of the registry contains a timestamp
that is covered by the signatures of the authorities.
To allow public auditing of the registry, a log of all
changes between every published version of the key
registry is published using a Merkle hash tree equiv-
alently to certificate transparency logs (Laurie et al.,
2013).

In addition to the registry hosting provided by the
authorities, a copy of the key registry including the
signatures from the authorities is hosted by additional
mirror servers, improving the availability of the reg-
istry.

2.2.2 Key Registration Authorities

The key registration authorities are responsible for
maintaining the key registry. To prevent an individ-
ual registration authority from manipulating, we rely
on two independent authorities.

Both key registration authorities independently
verify that requests to add a domain to the key registry
are authentic, i. e., the requestor has control over the
domain. Each authority sends a challenge that con-
sists of a randomly generated string to the requestor
who then deploys a DNS TXT record containing the
string for the domain. Additionally, the TXT record
contains a SHA-256 hash of the requested registry en-
try to prevent manipulations of the requests, e. g., by
a man-in-the-middle attacker.

Requests must always be sent to both authori-
ties. The authorities coordinate submission attempts
and block requests that do not fulfill this require-
ment. To prevent malicious deployments when an
attacker has temporarily gained control over a do-
main, an email is sent to the addresses hostmaster,
postmaster, security, and abuse of the domain ev-
ery hour throughout the 72 hours following the suc-
cessful ownership verification. The high email fre-
quency is chosen to mitigate attacks temporarily ma-
nipulating the DNS email configuration of the do-
main. After the 72 hours, the domain is added to
the key registry unless disputed by the legitimate do-
main owner. Within the first 14 days after addition,
an immediate removal can be requested by the legit-
imate domain owner after ownership validation (late
dispute). Afterwards, the entry is permanent and the
regular removal procedure (cf. Section 2.6) must be
used for removal.

The authenticity of the key registry is verified us-

Web Application Key Registry
Domain Public Key Hash and Domain Configuration

example.org SHA-256(), {"subdomains": ["", "*"]}
secure.my-bank.com revoked
newspaper.com SHA-256(), {"subdomains": ["", "*"],

"markedForDeletion": "2023-02-26"}
site.org SHA-256(), {"subdomains": [""]}

...

Web Browser

Web Server Web Application Operator

Independent Key Reg-
istration Authorities

Private Key

(D1) Web application operator gen-
erates key pair and stores private
key in a secure place never accessi-
ble by the web server.

(D2) Web application operator
initially requests inclusion of
public key for site.org.

Both authorities maintain and
sign the registry.

(D3) Operator stores
signatures of all web
application assets on
the server.

(R1) User wants to visit web
application at domain site.org.

(R2) Browser re-
trieves domain key
for site.org from lo-
cal copy of registry.

(R3) Browser re-
trieves and verifies
web application assets
and signatures from
site.org’s server.

Figure 1: Overview of the architecture of WEBAPPAUTH. The steps (D1) to (D3) are required to deploy the mechanism to a
web application at a new domain site.org. The steps (R1) to (R3) are performed upon every retrieval of a web application
using WEBAPPAUTH.

ing signatures from both authorities. Both have an
identical copy of the key registry as they enforce that
all modifications are registered with both authorities.

The public key of both authorities is included in
the browser and used to verify the authenticity of the
registry. Each authority is responsible for its private
key’s security and must store it on a hardware security
module or a device not connected to the Internet.

The communication between the web application
operators and the key registration authorities is pro-
tected through TLS. The TLS certificates of the au-
thorities are signed with the private key used for the
key registry for ensuring their authenticity, but use a
separate key pair for the communication itself. This
separate key pair cannot be used to sign registry ver-
sions, implying lower security requirements for the
protection of the private keys. In particular, key reg-
istries can store their key pair for signing the registry
on a dedicated secure device not connected to the In-
ternet while still being able to deploy the separate
communication key pair on their server connected to
the Internet.

Both authorities use independent implementations
of WEBAPPAUTH using different software stacks.
This reduces the likelihood that both have identical
vulnerabilities or bugs.

2.2.3 Web Application Manifest

Every web application that utilizes WEBAPP-
AUTH has to provide a manifest as a JSON
file at the path /.well-known/auth-protec-
tion/manifest.json. A signature of the manifest
created with the private key of the web application
operator is provided and verified by the browser (cf.
Section 2.2.4). If no valid manifest file exists or the
signature verification fails, the browser refuses to
load any part of the web application. If WEBAPP-
AUTH is enabled for more than one subdomain, each
subdomain has to provide its own manifest file.

An example of a manifest file is shown in List-
ing 1. Every manifest contains the following infor-
mation:

• The public key used for asset validation. Its hash
has to match the entry in the key registry.

• The creation time of the manifest file. It is used to
prevent a malicious rollback to a previous version.

• A list of file types excluded from the authentic-
ity protection, i. e., these file types do not require
signatures. This can be useful where files are gen-
erated automatically, e. g., images, documents or
HTML pages. Signing such files would be im-
practical without allowing the web server to have
direct access to the private key.
WEBAPPAUTH suppresses the sniffing of
(MIME) media types by the browser to prevent

{"publicKey": "d2ljaG1hbm5wYXNjYWwtcGF...",
"time": "2022-12-19T13:39:52.362346",
"excludeMediaTypes":

["application/json"],
"excludePaths": ["/staging/"],
"CSP": {"/": "default-src 'self';"}}

Listing 1: Example web application manifest file

possible exploitation (Barth et al., 2009). It
enforces that only scripts can be executed.

• The excludePath option disables protection for
specific paths. The browser does not verify
signatures underneath these paths. However,
it is not possible to load any files from ex-
cluded paths from origins that are not excluded.
For example, if /staging/ is excluded, a file
at path /app/foo.html cannot load a resource
/staging/script.js from an unprotected loca-
tion.

• The Content Security Policy (CSP) that must be
set for all protected resources. It must disallow
the inclusion of scripts from third-party origins.
Different CSPs can be set for different path pre-
fixes. If a resource uses a CSP that does not match
the configuration in the manifest, the request is
blocked by WEBAPPAUTH. The manifest must
set a CSP for every path, i. e., requests for re-
sources for which the manifest does not specify
a value are blocked.
The restriction of the CSP prevents attacks that
exploit media types that are excluded from pro-
tection. For example, without a restrictive CSP
and with the text/html media type excluded, an
attacker could use inline scripts to bypass protec-
tion of script files.

2.2.4 File Signatures

For every asset of the web application that is not ex-
cluded through the manifest file, a signature is pro-
vided by the web server validating both the media
type and the content. Two ways are supported to pro-
vide the signatures:

• Through an HTTP header Asset-Signature
containing the base64-encoded signature value.

• As a separate file at the same path with an addi-
tional .sig extension. This does not require mod-
ifications to the web server configuration, as they
can be deployed like regular web application files.
If the web server supports it, this approach can
be combined with HTTP/2 server push to provide
the signature files before the browser explicitly re-
quests them.

The browser always checks for the existence of the
Asset-Signature HTTP header first. Only if the
header is not present, it tries to retrieve the separate
signature file.

2.3 Deployment for a New Web
Application

To deploy the mechanism for a web application at a
domain that has not previously been used with WEB-
APPAUTH, the following steps are performed (cf.
Figure 1):

(D1) The web application operator generates an asym-
metric key pair consisting of a public and a private
key. The key generation is performed in a secure
environment. The private key is always stored in
a secure location inaccessible to the web server,
e. g., on an offline device that is never connected
to the Internet, or a hardware security device.
In addition, the application operator generates a
revocation message that is signed with the private
key. It can be used to revoke the key registry en-
try in case the private key is lost (cf. Section 2.7).
A secure storage of the revocation message is es-
sential to the availability of the domain, as any
attacker gaining access to the revocation message
can disable the web application.

(D2) The application operator sends a request for in-
clusion in the web application key registry to the
authorities, consisting of the domain name, the
SHA-256 hash of the public key, and the list of
subdomains that should enforce WEBAPPAUTH.
Before the registries accept the request, both inde-
pendently verify the domain ownership via DNS-
based authentication (cf. Section 2.2.2).
The application operator also provides a contact
email address and optionally a postal address. The
email address should (but does not have to) be-
long to a separate domain that is independent from
the registered domain. This contact information is
used to inform the private key holder of security-
relevant information about their domain, such as
a removal request or a revocation. The authorities
verify that they received identical contact infor-
mation. The contact information is not published,
however.

(D3) The web application operator signs the manifest
and all assets of the web application and uploads
the signatures to the web server. On every web
application update, signatures for the new and
changed assets are uploaded.
Deploying WEBAPPAUTH for a domain is a per-

manent action. Consequently, domain owners must

carefully consider whether to add their domain to the
key registry. If the key is lost or it becomes inconve-
nient to continue the support of WEBAPPAUTH for a
web application (e. g., due to changed application re-
quirements), the protected domain cannot be further
used. While in the latter case, it is possible to use the
manifest to disable WEBAPPAUTH for most parts of
the application, in the case of a lost key, it is not pos-
sible to perform any further modifications, including
to the protected file types. However, WEBAPPAUTH
provides a removal procedure (cf. Section 2.6) that
allows to remove a domain from the key registry with
a delay of two months.

2.4 Retrieval of a Protected Web
Application

A browser with support for WEBAPPAUTH performs
the following steps for every retrieval of a web appli-
cation and any other file received from a web server
(cf. Figure 1):

(R1) The browser receives the request to load a specific
URL.

(R2) The browser uses its verified local copy of the
key registry to check whether the respective do-
main uses WEBAPPAUTH. If no matching entry
is found, the browser continues to handle the in-
struction as usual. If an entry comprises the do-
main and contains a revocation flag, the browser
refuses the request. If a matching entry is found
that marks the domain for deletion in the past, the
entry is ignored and the browser continues to han-
dle the user instruction as usual. Otherwise, the
public key hash from the entry is used to verify
the public key.
Next, the browser retrieves the manifest file
for the web application from the /.well-
known/auth-protection.json path of the do-
main the request is sent to and verifies its sig-
nature. To verify the signature, the browser first
checks the Asset-Signature HTTP header of
the response. If missing, the signature at the path
with .sig suffix is requested. If no valid signature
is found, the request is blocked.
The manifest is cached locally according to the
cache configuration in the HTTP headers. If a
cached version not yet expired exists, the browser
does not request the manifest again. If the browser
previously retrieved a manifest file from this do-
main, it verifies that the timestamp of the new
manifest is more recent than the previous, block-
ing all requests to this domain otherwise.

(R3) Concurrently to the previous step, the browser re-
quests the URL from the server. Unless the mani-
fest excludes this media type or path, the browser
verifies its signature using the public key from the
manifest. The browser verifies the signature of the
manifest as explained in the previous step. The
last performed check verifies that the CSP of the
response matches the one configured in the WEB-
APPAUTH manifest for the respective path. If the
CSP does not match, the request is blocked.

When a request is blocked, the user is warned.
However, the user is not provided with the ability to
suppress such errors.

2.5 Update of a Key Registry Entry

The list of included subdomains of an entry can be
updated. The process is identical to the deployment
of a new web application (cf. Section 2.3) but the
requestor must use the existing key pair. After suc-
cessful domain ownership verification and 72 hours
dispute time, the existing entry is updated.

This process can only be used to extend the list
of subdomains. It is not possible to remove any sub-
domains this way. Removing a subdomain is subject
to the key registry entry removal process (cf. Sec-
tion 2.6).

However, it is possible to split an entry, i. e. cre-
ate a new, separate entry for a subdomain. To pre-
vent an attacker from exploiting this for publishing a
(compromised) key for a subdomain that would then
be used instead of the legitimate key from the origi-
nal entry, a waiting period of two months, similar to
the removal of an entry (cf. Section 2.6) has to be ob-
served. After this period has passed, the subdomain is
removed from the original entry. Simultaneously, the
requested new entry for this subdomain is published.

2.6 Removal of a Key Registry Entry

WEBAPPAUTH provides a removal procedure to al-
low domain owners to revert a deployment, for ex-
ample because they do not want to use it any longer
or the domain ownership has changed. However, the
removal enforces a delay of two months before tak-
ing effect to provide legitimate domain owners a suf-
ficient time to dispute an illegitimate removal request.

To initiate the removal of a domain, the domain
owner sends a removal request to both key registra-
tion authorities. Both authorities independently verify
the domain ownership of the requestor via DNS-based
authentication analogously to the process of domain
inclusion (cf. Section 2.2.2). If both authorities have
verified the ownership of the requestor, they update

the specific key registry entry to mark it for deletion
after the delay of two months. On the marked date,
the authorities completely remove the respective en-
try.

As an alternative to removing a full entry, subdo-
mains can also be removed from an entry. This will
leave the rest of an entry intact, covering the remain-
ing subdomains. This is subject to the same process
and delay as removing an entry altogether.

2.7 Revocation of a Key Registry Entry

A revocation procedure exists that allows to mark a
key registry entry as revoked in case the private key of
a domain is leaked. When the browsers have updated
their registry copy to contain the revocation flag of
the entry, they refuse any requests to its configured
(sub)domains, effectively disabling the domain for all
browsers supporting WEBAPPAUTH.

To perform the revocation, the operator sends their
domain’s signed revocation message they have pre-
pared during key generation (cf. Section 2.3) to both
key registries. The registries replace the domain con-
figuration with a revoked flag and publish a new ver-
sion of the key registry. The revocation procedure
does not trigger a removal. If desired, the operator
needs to follow the regular removal procedure (cf.
Section 2.6) to fully remove the entry.

3 Evaluation

In this section, we evaluate the overhead of WEBAPP-
AUTH for users and servers. Browsers contain a copy
of the key registry. Each entry has a size of approx-
imately 150 B depending on the number of subdo-
mains. Assuming 10000 entries, this results in a total
size of 1.5 MB stored locally. For comparison, the
HSTS preload list in Chromium contained approxi-
mately 198000 entries as of March 30, 2023. Due
to the nature of WEBAPPAUTH, we assume a much
lower number of deployments than HSTS preload,
given primarily web applications with client-side se-
curity operations benefit from WEBAPPAUTH.

Browsers update the registry at least daily if the
browser is used. As long as the last update is less than
a week ago, updates transfer only the delta to the pre-
vious version. Depending on the number of changes,
this adds a small amount of traffic for every daily up-
date, e. g. just under 5 kB for 33 updates. If the
browser has not been used for more than a week, this
requires another full download of the registry, caus-
ing another 1.5 MB of traffic for a registry of 10000
entries.

To retrieve a web application, browsers first check
whether the key registry contains an entry for the do-
main. Only domains included produce further over-
head: per protected domain, the browser retrieves the
manifest file, causing on average 500 B traffic for the
request-response pair. In addition, each request for a
file that is not excluded from protection adds a sig-
nature that is less than 80 B long if retrieved as a
header. If deployed as a separate file, a somewhat
larger amount of traffic of less than 400 B is gen-
erated, as a full request-response pair is needed. If
we assume a web application requires retrieval of 50
protected files, this causes a total of 4 kB (header) or
20 kB (separate signature files) of additional traffic.

No additional delay is caused by checking the
manifest, as it is retrieved concurrently to the other
files. Checking the signatures also causes no addi-
tional delay if they are delivered in an HTTP header.
If the server does not deliver signatures through the
header, a signature file will be retrieved after the cor-
responding file, however. This induces a delay of one
round-trip time.

4 Discussion

In this section, we discuss the practicability and limi-
tations of WEBAPPAUTH.

Relevance of the Threat Model Our threat model
considers a very strong attacker who has full control
over all servers of a web application. Consequently,
the attacker can manipulate all server-side process-
ing of the application and access all data. How-
ever, client-side code can use cryptography to con-
ceal plaintext data from the web server and verify data
authenticity. Thus, the protection of client-side code
of such applications is essential even when the web
servers are malicious.

Number of Key Registration Authorities The
number of authorities is a trade-off between trustwor-
thiness of the key registry (more independent parties
and thus higher trust) and overhead (more parties and
thus more peers to coordinate with). WEBAPPAUTH
uses two to keep the coordination overhead acceptable
while still preventing a single party from manipulat-
ing the registry.

Choice of Key Registration Authorities The au-
thorities need to be trustworthy. Possible options for
this role may be browser vendors or well-known non-
profit associations.

Attacks Prior to Initial WEBAPPAUTH Deploy-
ment We assume that the initial deployment of
WEBAPPAUTH, i. e., the addition of the domain to
the key registry, happens before any attack attempts,
for example right at the initial deployment of the web
application. That is, WEBAPPAUTH cannot provide
its protection if attacks occur before the deployment.
Such attacks may include attacker-initiated attempts
to register a new domain that did not exist previously,
e. g., for phishing.

Attackers With Full Control of the Domain At-
tackers fully controlling DNS(SEC) data of a domain
can break its availability. However, confidentiality
and authenticity of data remain protected on the client
side. An attacker must control the domain for more
than two months to undergo the complete removal
procedure in order to impair the confidentiality and
authentictiy of the client-side protected data.

Attacking Browsers Attackers not covered by our
threat model may attempt to attack browsers to dis-
able WEBAPPAUTH or to manipulate the public keys
of the authorities. However, the capability to manip-
ulate browsers also gives the attacker the ability to
manipulate the client-side web application execution
independently of any authenticity protection.

Application Vulnerabilities While WEBAPPAUTH
can protect the authenticity of the client-side code, it
cannot protect from vulnerabilities that are present in
the authentic code provided by the web application
operator.

Risk of Temporary Domain Loss If operators of a
WEBAPPAUTH-protected web application lose their
private key, they can no longer deploy updates to the
client-side code, making the domain practically unus-
able for web applications. This risk cannot be avoided
without losing protection from attackers who manage
to temporarily control the attacked domain, as such
attackers temporarily mock the role of the operator.
A removal procedure is available to re-gain control to
such a domain after a delay of two months.

Single Key per Entry Our architecture does not al-
low to use more than one key pair per registry en-
try. Consequently, domains for example maintained
by larger organizations need to sign their assets in a
secure way without providing additional keys for or-
ganizational units. This way, the responsibility for the
key security and trust management lies with a central
entity within the organization. On a subdomain level,

separate non-overlapping key registry entries can be
used with individual keys to split responsibility within
the organization.

Required Changes for Deployment To utilize the
protections of WEBAPPAUTH, some changes are re-
quired on the user and server side. Firstly, the browser
needs to support the mechanism. This support can be
added as a native browser functionality in the future.
Until then, a browser extension can be used to add
WEBAPPAUTH support to the browser, which does
not require implementation by browser vendors. Sec-
ondly, the web server needs to provide the signatures
for the protected assets. For file-based delivery, the
web application operator only needs to upload the
signature files to the server. For the more efficient
header-based delivery, the web server software needs
to be configured to read the signatures from their cor-
responding files and add them to the header. Depend-
ing on the used software, this may require changes
to its code. However, if a servers hosts only a small
number of infrequently updated files, it is sufficient to
statically configure the signature headers for the in-
dividual paths, which is possible in all popular web
server software without further changes.

5 Related Work

In this section, we discuss prior work on web authen-
ticity.

Established Web Security Mechanisms Several
security mechanisms are supported in all major
browsers. TLS (Rescorla, 2018) can protect the con-
fidentiality and authenticity of the communication be-
tween the web server and the browser using trans-
port encryption and validation of server certificates.
HTTP Strict Transport Security (HSTS) (Hodges et
al., 2012) allows to enforce the use of TLS for a
domain and is activated through an HTTP header.
With HSTS preloading (Chromium Project, 2023),
domains can be added to a list in browsers to protect
the first visit.

SRI (Akhawe et al., 2016) allows to protect in-
cluded subresources by specifying a cryptographic
hash of their contents. If a resources’ hash does not
match, the browser refuses to load it. SRI is intended
to protect from third-party servers hosting referenced
assets.

Signature-Based Authenticity Sutter et al. (2021)
consider a compromised TLS connection between a

browser and a web server, e. g., a man-in-the-middle
attack where the attacker has obtained a valid TLS
certificate. The authors use service workers to ver-
ify the integrity of all HTTP responses from the
web server, allowing deployment in web applications
without changes to the browser. All responses from
the web application contain a signature in an HTTP
header which is verified by the service worker. The
signatures are generated on the web server or option-
ally on a separate server. The client must have vis-
ited the domain before for the mechanism to provide
protection. If an attacker manages to compromise the
first connection of a user, they can suppress the corre-
sponding header to prevent the browser from enforc-
ing it, voiding all protection.

Levy et al. (2016) propose Stickler as an alter-
native to SRI that can be used to provide authentic-
ity to assets that are served through a content deliv-
ery network (CDN). The initial request is sent to the
first-party web server, returning a script that contains
the Stickler code and the public key of the first party.
This script retrieves a signed manifest file from the
CDN, allowing to retrieve and verify all further as-
sets from the CDN. Mignerey et al. (2020) propose
another browser extension that uses signatures to ver-
ify the authenticity of assets. Their solution assumes
the public key to be shared on an out-of-band channel
before the users visit the web application.

Cavage and Sporny (2019) propose a standard-
ization for end-to-end signing HTTP messages, i. e.,
preventing undetected tampering of messages during
their transmission. Their draft adds a Signature
header specifying the key used for signing as well as
the resulting signature. The other party can then ver-
ify the signature. However, Cavage and Sporny do not
cover the key exchange and key authenticity verifica-
tion processes.

Transparency Logging WAIT (Meißner et al.,
2021) provides transparency of client-side code
through a verifiable public log in which the web ap-
plication operators publish their code modifications.
This prevents web servers from tampering with the
client-side code sent to individual clients without pub-
lishing the specific modification to the log.

Salvador et al. (2018) focus on digital elections
and propose a solution that monitors changes of
client-side web application code introduced by the op-
erators. They perform periodic scans of the web ap-
plication to analyze its code and prevent web server
operators from delivering malicious code to a wide
range of their users. However, this monitoring-based
approach cannot prevent targeted attacks, e. g., if the
server operator provides malicious code only to users

at specific IP addresses.

Code Reviews Cap and Leiding (2018) propose an
architecture that relies on manual reviews of web ap-
plication code. All reviews are published in a public
log. A browser extension verifies whether a valid re-
view for a retrieved version of a web application exists
in this log. It then provides the user with information
about the security of the application based on this.

Jansen et al. (2017) implement a browser exten-
sion that verifies client-side web application code that
may be served from untrustworthy sources. They
consider a secure multi-party computation scenario
where multiple mutually distrusting parties want to
perform computations together through a web appli-
cation. All code is audited by multiple trusted parties
before it is executed on the clients.

Additional Trusted Servers The required trust can
be split across additional parties or trusted servers.
Karapanos et al. (2016) propose Verena, which adds
an additional server to the deployment of a web ap-
plication, allowing clients to receive cryptographic
proofs of the application integrity. All requests requir-
ing end-to-end authenticity are passed through this
additional Verena server which generates a proof ver-
ifiable by the browser. The developer defines which
application parts require such proofs. Verena allows
to protect from attackers who compromise the appli-
cation server and the database server as long as the
Verena server is not compromised.

Popa et al. (2014) consider a threat model in which
the attacker has full access to the web server. They
provide a web application framework that provides
client-side encryption, allowing keyword searches on
the server without decryption. Their architecture as-
sumes that attackers are unable to tamper with the ini-
tial user’s request to a first origin, while manipulations
to all communication with a second origin can be de-
tected.

DNS-based Authenticity Protection Multiple so-
lutions rely on DNS records to provide protection.
The SecureBrowse project (Chuk and Shapiro, 2019)
provides protection if the connection between the
client and the web server is compromised or a third-
party web server is malicious. It relies on DNS
TXT records that contain Subresource Integrity (SRI)
hashes of the web resources, including all first-party
resources and the main page. To ensure the authen-
ticity of the DNS records, DNS-based Authentication
of Named Entities (DANE) is used. However, un-
like WEBAPPAUTH, SecureBrowse does not require

the key to be kept outside of the web server’s con-
trol and thus does not consider a compromised first-
party web server. Beyond DANE, SecureBrowse does
not protect from a compromised DNS, for example if
an attacker manages to remove or replace an existing
DNSSEC key and set an own DNS nameserver for
the domain. Furthermore, unlike WEBAPPAUTH, Se-
cureBrowse is unable to protect from attackers who
are able to control the DNS for multiple days, includ-
ing the capability to manipulate DNSSEC keys. In ad-
dition, SecureBrowse does not allow to exclude assets
from protection, which makes it unsuitable in some
scenarios that are covered by WEBAPPAUTH, such as
dynamic generation of HTML or media files.

Varshney and Shah (2021) analyze the threat
of client-side manipulation of web application code
through browser extensions. They propose a DNS-
based security policy framework that enables the
browser to detect such manipulation. Their architec-
ture provides hashes of important pages of the web
application via DNS TXT records, which the browser
can compare with the hashes of the actual pages.

6 Conclusion

In this paper, we proposed WEBAPPAUTH that can
protect from very strong attackers who have full con-
trol over all web servers and the domain DNS. It re-
lies on signing client-side code with a private crypto-
graphic key, which the web application operator must
store in a secure location, such as on air-gapped de-
vices. Two independent key registration authorities
verify domain ownership and maintain a public reg-
istry containing the public keys of all domains. These
public keys can then be used by clients to verify
the authenticity of the web application. WEBAPP-
AUTH requires the transmission of only a relatively
low amount of extra data and can be deployed in a
way that does not cause additional delays when load-
ing a web application. It is robust to attackers fully
controlling an attacked domain for a limited time.

As future work, we intend to research server-
side authenticity within our threat model, e. g., using
trusted hardware.

References

Akhawe, Devdatta et al. (2016). Subresource Integrity.
W3C Recommendation. URL: https : / / www . w3 . org /
TR/2016/REC-SRI-20160623/.

Barth, Adam et al. (2009). Secure Content Sniffing for
Web Browsers, or How to Stop Papers from Reviewing
Themselves. In: 30th IEEE S&P, pp. 360–371.

Cap, Clemens and Benjamin Leiding (2018). Ensuring
resource trust and integrity in web browsers using
blockchain technology. In: International Conference on
Advanced Information Systems Engineering, pp. 115–
125.

Cavage, Mark and Manu Sporny (2019). Signing HTTP
Messages. Internet-Draft draft-cavage-http-signatures-
12. URL: https://www.ietf.org/archive/id/draft-cavage-
http-signatures-12.txt.

Chromium Project (2023). HSTS Preload List Submission.
Accessed May 5th, 2023. URL: https://hstspreload.org.

Chuk, Brian and Paul Shapiro (2019). SecureBrowse
Project. URL: https : / / gitlab . com / securebrowse /
securebrowse/-/wikis/The-SecureBrowse-RFC.

Hodges, J. et al. (2012). HTTP Strict Transport Security
(HSTS). RFC 6797.

Jansen, Frederick et al. (2017). Brief Announcement: Fed-
erated Code Auditing and Delivery for MPC. In: Sta-
bilization, Safety, and Security of Distributed Systems -
19th International Symposium, SSS, pp. 298–302.

Karapanos, Nikolaos et al. (2016). Verena: End-to-End In-
tegrity Protection for Web Applications. In: 37th IEEE
S&P, pp. 895–913.

Laurie, B. et al. (2013). Certificate Transparency. RFC
6962.

Levy, Amit et al. (2016). Stickler: Defending against Mali-
cious Content Distribution Networks in an Unmodified
Browser. In: IEEE Security & Privacy 14.2, pp. 22–28.

Meißner, Dominik et al. (2021). WAIT: protecting the
integrity of web applications with binary-equivalent
transparency. In: SAC ’21: The 36th ACM/SIGAPP
Symposium on Applied Computing, pp. 1950–1953.

Mignerey, Josselin et al. (2020). Ensuring the Integrity of
Outsourced Web Scripts. In: 17th International Joint
Conference on e-Business and Telecommunications,
ICETE 2020 - Volume 2: SECRYPT, pp. 155–166.

Popa, Raluca Ada et al. (2014). Building Web Applica-
tions on Top of Encrypted Data Using Mylar. In: 11th
USENIX Symposium on Networked Systems Design and
Implementation, NSDI, pp. 157–172.

Rescorla, E. (2018). The Transport Layer Security (TLS)
Protocol Version 1.3. RFC 8446.

Salvador, David et al. (2018). wraudit: A Tool to Trans-
parently Monitor Web Resources’ Integrity. In: Mining
Intelligence and Knowledge Exploration - 6th Interna-
tional Conference, MIKE, pp. 239–247.

Sutter, Thomas et al. (2021). Web Content Signing with Ser-
vice Workers. In: arXiv:2105.05551.

Varshney, Gaurav and Naman Shah (2021). A DNS Secu-
rity Policy for Timely Detection of Malicious Modifica-
tion on Webpages. In: 28th International Conference on
Telecommunications (ICT).

