
How to hide your VM from the big bad wolf? Co-location
resistance vs. resource utilisation in VM placement strategies

Jens Lindemann
Universität Hamburg
Hamburg, Germany

ABSTRACT
VMs in cloud environments are at threat of attacks from VMs co-
located on the same server, e. g. through side-channels. Reducing
the ability of attackers to achieve co-location with specific VMs can
alleviate the risk of targeted attacks. This paper presents the simu-
lation framework VMPlaceSim, which allows to evaluate resource
utilisation and resistance against co-location attacks of VM place-
ment strategies. A new strategy based on the proportion of known
users on servers is proposed and evaluated on real-world cloud
workload data alongside existing strategies. The evaluation takes
attacks into account in which malicious VMs are either launched
in regular intervals or their launch is timed around the launch of
target VMs. The results indicate that the new known-users strategy
is significantly more resistant to co-location attacks than existing
strategies aimed at optimising resource utilisation, while retaining
a relatively high resource utilisation exceeding that of strategies
aimed at thwarting co-location attacks.

CCS CONCEPTS
• Computer systems organization→ Cloud computing; • Se-
curity and privacy→ Distributed systems security.

KEYWORDS
cloud computing, VM placement, co-location resistance, security
ACM Reference Format:
Jens Lindemann. 2023. How to hide your VM from the big bad wolf? Co-
location resistance vs. resource utilisation in VM placement strategies. In
The 18th International Conference on Availability, Reliability and Security
(ARES 2023), August 29-September 1, 2023, Benevento, Italy. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3600160.3604983

1 INTRODUCTION
Public clouds allow customers flexible access to computing re-
sources without having to invest in their own hardware. This is re-
alised by cloud service providers renting out such resources to differ-
ent users, e. g. virtual machines (VMs) in the case of infrastructure-
as-a-service (IaaS) clouds.

When assigning VMs to physical servers, there are two compet-
ing interests: On the one hand, providers want to maximise the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ARES 2023, August 29–September 1, 2023, Benevento, Italy
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0772-8/23/08. . . $15.00
https://doi.org/10.1145/3600160.3604983

utilisation of their servers. This will save costs, as fewer servers
need to be procured and operated. On the other hand, customers
want their VMs to not be placed on the same server as those of
malicious other users. This is because the sharing of resources by
VMs on a server opens up possibilities for attacks, e. g. through
security vulnerabilities in the hypervisor or side-channel attacks.

It is impossible to fulfil both goals perfectly at the same time, i. e.
they form a trade-off. To achieve perfect co-location resistance as
defined by Azar et al. [4], a provider would need to place only VMs
of a single user on a server. This is incompatible with maximising
resource utilisation: Consider a user with just one small VM. Unless
the server is also very small, the provider would be left with a
large amount of unused resources on the server hosting this VM.
Therefore, different strategies aimed at retaining a relatively high
resource utilisation while still achieving co-location resistance have
been proposed. These strategies still leave room for optimisation,
with some strategies falling short in terms of resource utilisation
and thus being too costly to implement and others failing to provide
a meaningful protection from co-location attacks.

The threat model of this paper assumes the attacker to be a
customer of a public cloud service provider which is also used by
other, benign users. The attacker’s goal is to obtain co-location with
VMs of other users. The attacker can launch VMs and is free to
choose both the resource requirements of a VM and its start time.
However, placement decisions are made by the provider, i. e. the
attacker cannot choose which server a VM is placed on.

The provider, on the other hand, aims to protect its benign users
from malicious users. More specifically, the provider’s goal is to
minimise the number of benign users whose VMs are placed on
servers also hosting VMs of malicious users at the same time.

This paper makes the following key contributions:

(1) The open-source simulation framework VMPlaceSim is pre-
sented, which can be used to evaluate co-location resistance
and resource utilisation achieved by VM placement strate-
gies.

(2) The known-users (KU) placement strategy is proposed.
(3) The co-location resistance and resource utilisation of KU

as well as existing placement strategies are evaluated ex-
perimentally. In contrast to previous work analysing such
strategies, the evaluation covers attack scenarios where an
attacker times VM launches around the launch of a target
VM or spreads out VM launches equally over time.

The remainder of this paper is structured as follows: Section 2
discusses related work. Then, existing placement strategies as well
as the known-users strategy are presented in Section 3. The sim-
ulation framework is presented in Section 4. Section 5 describes
the evaluation, before Section 6 concludes the paper and gives an
outlook on future work.

https://orcid.org/0000-0003-0103-2461
https://doi.org/10.1145/3600160.3604983
https://doi.org/10.1145/3600160.3604983

ARES 2023, August 29–September 1, 2023, Benevento, Italy Jens Lindemann

2 RELATEDWORK
Obtaining co-location with a target VM may allow an attacker to
launch attacks that would not otherwise be possible. Many such
attacks are related to side-channels enabled by shared hardware.
For example, through the Spectre vulnerability [20], data can be
extracted from the host OS as well as co-located VMs. Cache-based
side-channel attacks allow to extract cryptographic keys across
VM boundaries [34]. Monitoring cache behaviour can also reveal
the level of activity in co-located VMs [26]. A timing side-channel
caused bymemory deduplication can reveal the randomised address
space layout [5] or which applications are running in another VM
[22]. Foreshadow-VMM [28] allows reading data from the L1 cache
from within a VM. Rowhammer attacks can even induce bit flips in
read-only memory [19], including that of co-located VMs [30].

A further danger is posed by vulnerabilities in hypervisors,
which could not only allow compromising the hypervisor or host
OS, but also co-located VMs from there [25]. Finally, resource con-
tention can affect performance across VMs [21], which can be ex-
ploited by inducing load, e. g. on memory [32, 33] or storage [8].

Achieving co-location with a target VM is realistic even in large
public cloud environments [3, 27, 31]. While this effect has dimin-
ished significantly [31], Amazon EC2 was previously susceptible
to an attacker timing their VM launches to coincide with that of a
target VM [26].

To detect whether co-location with a target was achieved, an
attacker could trigger load on the target VM and then measure
the load on the server based on cache [26] or memory latency
[27]. Cache-based side-channel attacks may also be used to detect
co-location, e. g. by detecting the reception of pings [14].

Han et al. [16] describe a game-theoretic framework in which
an attacker wishes to launch few VMs to achieve co-location with
many target VMs, while the defender wants to place VMs so that
the attacker’s success is minimised while balancing the workload
between servers and achieving a low power consumption.

Cortez et al. [11] study the workload of the Azure cloud and try
to improve resource utilisation by predicting CPU usage of VMs
and oversubscribing the host CPU resources. They also made two
datasets of the Azure VM workload publicly available [9, 10].

CloudSim [7] is a simulation framework for cloud environments.
It is relatively complex and supports simulating host and VM pro-
visioning, application workloads as well as network traffic. It is
not, however, geared towards evaluating co-location resistance. It
also does not support directly loading the cloud workload dataset
provided by Cortez et al. [11].

An alternate approach to the type of strategy analysed in this
paper is to limit the amount of time they are co-located. This can
be achieved by regularly migrating VMs between servers [24, 34].
While this reduces the time spent co-located with a malicious VM,
this will increase the chance of encountering one.

3 PLACEMENT STRATEGIES
This section presents existing placement strategies (Sect. 3.1) as well
as the proposed known-users (KU) strategy (Sect. 3.2). Implementa-
tions of the evaluated strategies are included with the simulation
framework (cf. Sect. 4).

A placement strategy has the primary objective of assigning
a new VM 𝑣𝑛 of a user 𝑢𝑟 to a server. There can be different side
objectives, such as maximising co-location resistance or minimising
the number of active servers, i. e. servers that are turned on and
hosting VMs, in contrast to inactive servers, which can be turned
off. This would help to reduce energy consumption and costs.

3.1 Existing strategies
Many different placement strategies already exist, some of which
are evaluated in this paper. Of these, the PCUF, PSSF, LDBR, Azar
and dedicated-instance strategies were designed with co-location
resistance in mind. These provide what Masdari et al. [23] con-
sider to be static VM placement, i. e. VMs will remain on a server
throughout their lifetime. The remaining strategies are provided
for comparison and are aimed at optimising either the resource
utilisation or the balance of the workload between servers.

Agarwal and Duong [1] propose the previously co-located
users first (PCUF) strategy. When an existing user 𝑢𝑟 requests
a new VM 𝑣𝑛 , the strategy considers all active servers that fulfil
two criteria: First, the server needs to have sufficient free capacity.
Second, at least one of the VMs on the server must belong to a user
who has previously had a VM co-located with one of 𝑢𝑟 ’s VMs. Out
of these servers, the one with the fewest free CPU cores is selected.
If no server fulfils the criteria, an inactive server is activated instead.

If 𝑣𝑛 is𝑢𝑟 ’s first VM, it is assigned to a random active server with
sufficient capacity, if possible, or else to an inactive server.

Note that a disadvantage of co-locating VMs of users whose
VMs have previously been placed together is that this will allow
an attacker to reproducibly obtain co-location with such users. To
avoid this, more variation would have to be introduced into VM
placements, thereby exposing more different users to co-located
VMs of malicious users. This also applies to other strategies relying
on a similar principle (e. g. PSSF and KU).

The strategy of Azar et al. [4] keeps three lists for inactive
(“empty”), active (“open”) and full (“closed”) cloud servers. Only a
number of servers is initially made active. A new VM is assigned
to a random active server. If less than half of one of the server’s
resources remains available after assigning a new VM, the server is
considered full. An additional server is then made active.

Azar et al. do not discuss how their strategy handles an increase
in the available capacity of a server after a VM shutdown. Agarwal
and Duong [1, p. 217] therefore extend the strategy for their ex-
periments: Whenever a VM is shut down, they check the available
resources of a server and, if necessary, move the server to the list
of active or, if it is now empty, inactive servers.

A problem with this is that the number of active servers may
diverge from the configuration. Thus, the implementation for this
paper incorporates an additional change: If the number of active
servers would be too high after a VM has been shut down, empty
active servers are shut down until the number of active servers
matches the configuration, if possible. Also, newly emptied servers
are only deactivated if enough servers would remain active.

The strategy makes the assumption that no VM may use more
than half of a server’s total capacity with respect to a resource. If
there is a VM that breaks this assumption, the strategy may fail
due to choosing a server with insufficient capacity. Therefore, a

Co-location resistance vs. resource utilisation in VM placement strategies ARES 2023, August 29–September 1, 2023, Benevento, Italy

further modification was made: If one of the resource constraints
of a VM exceeds half of the total capacity of a server, the active
servers are filtered according to their free capacity. Inactive servers
are then added to the list of candidates, so that the same number of
candidate servers is always available for selection.

Han et al. [17] propose the previously-selected-servers-first
(PSSF) placement strategy. The strategy divides the servers into
equally sized groups. At first, only one group is active. All other
servers remain inactive. The strategy first tries to fill up a group of
servers before it activates another group.

If there is at least one server within the active group(s) with
sufficient capacity for the new VM 𝑣𝑛 of 𝑢𝑟 , a random server which
currently hosts or has previously hosted a VM of 𝑢𝑟 is chosen. If no
server fulfils these criteria, one of the servers currently hosting the
lowest number of VMs within the first active group containing at
least one server with sufficient free capacity is chosen. If no such
server exists, the first inactive group is activated.

Unlike other strategies, PSSF operates based on active and inac-
tive groups instead of servers. This leaves room for interpretation as
to whether empty servers within an active group should be active.
In this paper, such servers are considered to be inactive.

Xiao et al. [29] propose the least danger based on reputation
(LDBR) strategy. It places VMs based on user reputations, which
are to be determined using a detection mechanism for co-location
attacks. They do not, however, propose such a detection mechanism.

LDBR aims to calculate the expected change in the number of
VMs exposed to malicious users. Where 𝑛 is the number of VMs
on the server, 𝑝𝑖 the probability that the owner of the 𝑖th VM on
that server is malicious and 𝑝′ the probability that the owner of
the new VM is malicious, the expected change in the number of
VMs exposed to malicious users is calculated as follows: 𝐸 (Δ𝑇) =
𝑛
∏𝑛

𝑖=1 𝑝𝑖 (1 − 𝑝′) + (1 −
∏𝑛

𝑖=1 𝑝𝑖)𝑝′. The new VM is allocated to
the server with the minimum 𝐸 (Δ𝑇). For this paper, LDBR was
modified slightly so that it prefers assigning a VM to an already
active server. This encourages energy and cost savings.

The best-fit heuristic for online bin packing problems can also
be used as a placement strategy. To implement this, a new VM 𝑣𝑛 is
assigned to one of the active servers with the fewest free cores, but
enough capacity for 𝑣𝑛 . If no active server has sufficient capacity,
an inactive server is activated. The strategy is aimed at maximising
the core utilisation, but does not directly optimise the use of other
resources. VM ownership is not considered in placement decisions.

If the worst-fit heuristic is used as a placement strategy, it as-
signs a new VM 𝑣𝑛 to one of the active servers with the most free
cores. If no active server has sufficient free resources, an inactive
server is activated. This strategy spreads out the core utilisation
evenly between the active servers. Like best-fit, it makes VM place-
ments without regarding VM ownership.

To apply the first-fit bin packing heuristic to VM placements,
a fixed order of servers is defined. A new VM 𝑣𝑛 is assigned to
the first server in the fixed order that has sufficient free capacity.
This strategy is geared towards optimising resource utilisation. VM
ownership is not considered in placement decisions.

For the next-fit heuristic, a fixed order of servers is again de-
fined. A new VM 𝑣𝑛 is assigned to the server succeeding the one
used to host the last created VM. If this server does not have suffi-
cient capacity to host the new VM, it is skipped. At the end of the

server list, the strategy reverts back to the first server. Again, VM
ownership is not considered in placement decisions.

The random strategy assigns a newly requested VM to a ran-
dom server. The implementation for this paper tries to first use an
active server with sufficient capacity, before activating additional
servers. Alternatively, all servers including inactive ones could be
considered as candidates, spreading out the VMs even more. VM
ownership is not considered in placement decisions.

The dedicated-instance strategy places only VMs of a single
user on a server at a time. Amazon offers its customers the option
to rent VMs placed in this manner [2]. This ensures that users never
encounter a malicious VM. However, this also means that a server
may host only one small VM if it is the user’s only VM.

Hay et al. [18] propose to apply theChineseWall security policy
[6] to the placement of VMs. They propose to assign customers to
conflict of interest classes. Only VMs from at most one customer
from each class may be placed onto a server. Other VM placement
strategies that would allow for defining very specific constraints
on the placement of VMs – and thus prevent specific pairs or types
of VMs from being co-located – were proposed by Espling et al.
[12] as well as Gaggero and Caviglione [13]. As the dataset used for
evaluation does not contain information about conflicts of interest
between users, these policies are not evaluated in this paper.

There are also much more complex strategies than those sur-
veyed here. One example of these is Protean [15], which is used by
Microsoft Azure. It covers multiple cloud zones and makes place-
ment decisions on multiple layers.

3.2 Known-users (KU) strategy
The known-users (KU) strategy considers the proportion of users
known on a server. Algorithm 1 shows s pseudo-code representation
of the strategy. When a user 𝑢𝑟 requests a new VM 𝑣𝑛 , the strategy
first considers all active servers with sufficient free resources. It
then checks howmany of the users whose VMs are currently hosted
on the server have previously had VMs co-located with a VM of 𝑢𝑟
and calculates the proportion of users for which this is the case.

The VM is then placed on the server on which 𝑢𝑟 knows the
highest proportion of users. If the maximum proportion is shared
by multiple servers, one of these is chosen randomly.

Note that if there is a server that is already hosting a VM of 𝑢𝑟
and that has sufficient capacity, this server will be chosen as 𝑢𝑟
knows all other users on this server. Therefore, the strategy has a
tendency of selecting servers previously selected to host VMs of
a user. However, unlike PSSF, it considers the users currently on
the server instead of the server itself. As attacks originate from
users and not the server itself, this better estimates how dangerous
a server is: On the one hand, a server may have hosted a VM of
𝑢𝑟 previously, but the other VMs on the server may since have
changed completely. On the other hand, a server may have never
hosted a VM of 𝑢𝑟 before, but the other VMs on the server may
belong to users whom 𝑢𝑟 has encountered before.

To implement this strategy, information about whether two users
know each other, i. e. whether their VMswere previously co-located,
needs to be stored. This can be achieved by storing one boolean
value for each pair of users (i. e. (𝑛2 − 𝑛)/2 values for 𝑛 users).

ARES 2023, August 29–September 1, 2023, Benevento, Italy Jens Lindemann

Algorithm 1: Known-user (KU) server selection strategy
Input: 𝑆𝑎 , 𝑆𝑖 – sets of active and inactive servers

𝑚𝑛 , 𝑐𝑛 , 𝑢𝑛 – memory, CPU cores and owner of new VM
1 𝑆𝑐 ← ∅ ; // Initialise set of candidate servers

2 𝑝𝑚𝑎𝑥 ← 0 ; // Max. proportion of users known

3 forall 𝑠 ∈ 𝑆𝑎 do
4 if freememory(𝑠) ≥ 𝑚𝑛∧ freecores(𝑠) ≥ 𝑐𝑛 then
5 𝑇, 𝐾 ← 0 ; // Sets of total and known users

6 forall 𝑣 ∈ 𝑠 do // Iterate over VMs on server
7 𝑢𝑣 ← 𝑣 .owner
8 𝑇 ← 𝑇 ∪ {𝑢𝑣}
9 if 𝑢𝑛 .knows(𝑢𝑣) then
10 𝐾 ← 𝐾 ∪ {𝑢𝑣}

11 𝑝𝑛 ← |𝐾 | / |𝑇 |
12 if 𝑝𝑛 > 𝑝𝑚𝑎𝑥 then
13 𝑆𝑐 ← {𝑠}
14 𝑝𝑚𝑎𝑥 ← 𝑝𝑛

15 else if 𝑝𝑛 = 𝑝𝑚𝑎𝑥 then
16 𝑆𝑐 ← 𝑆𝑐 ∩ {𝑠}

17 if 𝑆𝑐 = ∅ then
18 𝑆𝑐 = 𝑆𝑖

Output: random 𝑠 ∈ 𝑆𝑐

Alternatively, for each user, a list of known users can be stored,
which avoids the need to store a value for each pair of users.

Whenmaking a placement decision, the strategy needs to look up
for each user on each server that has sufficient resources available
whether that user has previously been co-located with a VM of the
new VM’s owner. The complexity thus rises with the number of (1)
servers with sufficient free resources available to host a VM and
(2) different users present on the servers. The number of servers
with sufficient free resources is likely to rise with the size of a cloud
environment. The number of users that could be present on a server,
on the other hand, depends on the relative size of VMs and servers,
but should not vary depending on the cloud size. Therefore, a larger
cloud environment makes placement decisions more complex, but
only in proportion to the computational resources used by the VMs
themselves.

4 SIMULATION FRAMEWORK
This paper is accompanied by the open-source framework VM-
PlaceSim for simulating VM placement strategies and evaluating
their performance, which is available on Github1.

The framework includes implementations for all placement strate-
gies evaluated in the paper, as described in Sect. 3. Each strategy is
encapsulated in a separate Java class extending the interface Place-
mentStrategy. The framework is extensible: Additional strategies
can be added by extending this interface.

The framework simulates VM allocations within a cloud based on
the chosen placement strategy. It reports the results in the form of
CSV files, which contain various statistics about resource utilisation,

1https://github.com/jl3/VMPlaceSim

co-location resistance as well as the number of server starts and
shutdowns. A detailed description of the metrics supported by the
framework can be found in Section 4.1.

The framework processes information about the VMs to create
throughout the simulation provided in form of a CSV file. The
file format matches that of the publicly available Microsoft Azure
datasets [9, 10]. For each VM, it specifies boot and shut-down time,
CPU core count and memory footprint. Furthermore, the ownership
of the VM is defined by a user ID. The CSV files of the Microsoft
datasets also contain a VM ID, deployment ID, a VM category as
well as information about CPU utilisation. However, these are not
used in any of the placement strategies evaluated in this paper.

The framework allows many parameters of the simulation to
be configured: First, the number of servers in the simulated cloud
environment and their CPU core and memory capacity. Second,
the number of servers initially active. Third, the start and end time,
which allows the simulation to be restricted to a part of the period
covered by the input data. Fourth, the statistics can be reported
in desired intervals throughout the simulation. Fifth, the seed for
the PRNG initialisation can be set to ensure comparability of re-
sults across strategies as well as reproducibility. Sixth, parameters
specific to strategies can be set, e. g. the group size for PSSF.

Finally, the proportion(s) of malicious users can be set for ex-
periments where these are to be chosen randomly from the input
data. The framework can test multiple proportions in a single run
for strategies whose placements are not based on whether a user is
malicious. This is the case for all but the LDBR strategy, where the
differences in the calculated user reputations will lead to different
placements for different proportions of malicious users.

During a simulation, two events are processed for each VM: start
and shutdown. Events are processed in the order of the time speci-
fied. If VMs are started and shut down at the same time, VM starts
are processed first. In such cases, the time resolution of the input is
insufficient to determine the real order of these events. Processing
starts first prevents underestimating the resource requirements.

Both start and shutdown events are considered to be instanta-
neous, i. e. they have an immediate effect on resource consumption.
This means that if a VM needs time to shut down before it can be
decommissioned, the shutdown time in the input data should be
set to the time of completion of the shutdown.

A similar assumption is made for the activation and deactiva-
tion of servers, which is also considered to be instantaneous. In
reality, booting or shutting down a machine will take some time,
during which the machine cannot host any VMs, but is still on and
consumes energy. This implies that resource utilisation may be
overestimated slightly.

4.1 Supported metrics
In the following, the metrics supported by the simulation frame-
work are described. The framework will report the results of an
experiment by writing the calculated metrics to CSV files. Where
appropriate, these can also be calculated periodically throughout
the experiment. This allows an insight into changes over time, such
as the performance of a strategy improving or deteriorating.

One important aspect of the performance of a strategy is to what
extent it exposes VMs of benign users to those of malicious users. To

https://github.com/jl3/VMPlaceSim

Co-location resistance vs. resource utilisation in VM placement strategies ARES 2023, August 29–September 1, 2023, Benevento, Italy

this end, Agarwal and Duong [1, p. 214–215] propose to determine
the proportion of users who were ever exposed to a malicious users.
This means that a user is considered to be safe only if none of their
VMs were ever co-located with any VM of any malicious user. In the
following, this will be referred to as user-based co-location resistance
(UCLR) – Agarwal and Duong [1] simply refer to this as co-location
resistance (CLR). It is calculated as follows:

UCLR =
number of safe benign users
total number of benign users

As an alternative to this, the simulation framework calculates
the VM-based co-location resistance (VMCLR). It considers whether
individual VMs of benign users are safe. A VM is safe if it was
never co-located with any VM owned by any malicious user. The
VMCLR may better represent the security of a VM from co-location
attacks where a user runs many VMs configured in a way that a
successful attack on one VM does not easily allow the compromise
of another (e. g. VMs are processing different data or are not sharing
a cryptographic key at danger of a side-channel attack). This is in
contrast to the UCLR, which assumes a user to be unsafe if just one
of their VMs has been co-located with a malicious user. This may
be more appropriate for a load-balancing scenario, where a user
runs many identical VMs, so that an attack on any of these VMs
would completely compromise the user’s security. The VMCLR is
calculated as follows:

VMCLR =
number of safe VMs owned by benign users
total number of VMs owned by benign users

The CLR metrics can be determined for the full experiment or
for sub-periods. When evaluating the CLR for sub-periods, the
framework additionally supports calculating the NewVMCLR, i. e.
the CLR only for VMs launched within a period. If the CLR of a
placement strategy deteriorates over time, i. e. newly created VMs
are exposed to more risk, the NewVMCLR will clearly show this.
The NewVMCLR for a period 𝑃 is calculated as follows:

NewVMCLR =
no. of safe VMs of benign users launched in 𝑃
total no. of VMs of benign users launched in 𝑃

As mentioned in related work, providers may also try to limit the
time that users or VMs are unsafe, e. g. by migrating them between
servers. This may be appropriate if VMs are considered to only
holds sensitive information for short periods of time or if attacks
are assumed to take a long time. In this case, it may be useful to
investigate the time that VMs of benign users are co-located with
those of malicious users. To this end, the framework provides the
safe VM-time proportion (SVTP), which is calculated as follows for
the set of all VMs 𝑉 :

SVTP =

∑
𝑣∈𝑉 safeTime(𝑣)∑

𝑣∈𝑉 (shutdownTime(𝑣) − startTime(𝑣))
The safe-time proportion can also be calculated on a per-user

base. In this case, a user is deemed safe while none of their VMs is
co-located with a malicious user. A user is deemed active when at
least one of their VMs is running. Where 𝑈 is the set of all users,
the safe user-time proportion (SUTP) is calculated as follows:

SUTP =

∑
𝑢∈𝑈 safeTime(𝑢)∑
𝑢∈𝑈 timeActive(𝑢)

The framework also supports the metric of coverage, as proposed
by Xiao et al. [29, p. 5–6]. They define this as the “rate of servers in
danger”, i. e. the proportion of servers that host a VM of a malicious
user, thereby putting any VMs of benign users placed on this server
at danger. It is calculated as follows:

Coverage =
number of servers with VMs of malicious users

number of servers
Another important perspective is how efficiently the resources

of servers are used by a placement strategy. To this end, the core
utilisation (CU) can be calculated, which tells how many of the CPU
cores of active servers are being used. A higher CU means that
fewer servers need to be active. Where 𝑉 is the set of all VMs and
𝑆 the set of all servers, it is calculated as follows:

CU =

∑
𝑣∈𝑉 (cores(𝑣) ∗ (startTime(𝑣) − shutdownTime(𝑣)))∑

𝑠∈𝑆 (cores(𝑠) ∗ timeActive(𝑠))
Statistics related to the activity of servers can also be generated:

On the one hand, the number of server boots and shutdowns are
provided. Note that while these numbers will be equal for a full
simulation, they may differ for a sub-period. On the other hand, the
average number of servers active is calculated both at the end of
the simulation as well as for sub-periods.

The average number of active servers is directly related to the
CU: Given the same VM requests, a higher CU leads to a lower
average number of active servers. Therefore, both metrics give an
impression of the energy efficiency of a placement strategy.

Statistics about VM activity are reported: VM starts, VM shut-
downs, the maximum number of VMs and the average number of
VMs active. Note that these statistics relate to the dataset instead
of the placement strategy, which does not have an influence on
whether and when VMs are started or shut down.

Finally, statistics relating to the memory use of strategies that
need to store additional information to consider in their placement
decisions are reported: For KU and PCUF, the number of co-location
relationships between user pairs is reported. For PSSF, the number
of host-user relationship pairs is reported.

5 EVALUATION
The existing placement strategies as well as the newly proposed
KU strategy were evaluated with regard to resource utilisation and
co-location resistance. While the real-world Azure dataset was used
to represent the VM deployments, no real-world data about VM
deployments by attackers is available. Therefore, some users from
the dataset were randomly declared to be malicious for a first ex-
periment (Sect. 5.1). Additionally, isochronous and targeted attacks
were evaluated. For this, artificially generated attacker deployments
were generated that represent different possible behaviours of an
attacker trying over a longer time to get their VMs co-located with
other VMs. The Azure dataset workload was used to represent be-
nign users. In an isochronous attack, attackers launch their VMs
in regular intervals (Sect. 5.2). In a targeted attack, they time the
launch of their VMs around the launch of a target VM (Sect. 5.3).

For the evaluation, a dataset published by Microsoft [10] was
used, which contains information about VM deployments in the
Azure cloud from 2019. It covers a period of 30 days and comprises
2 695 548 VMs of 6 687 distinct users.

ARES 2023, August 29–September 1, 2023, Benevento, Italy Jens Lindemann

This dataset is similar to the earlier 2017 dataset [9], days 11-20
of which were used by Agarwal and Duong [1] for their evaluation.
For the sake of brevity, this paper will present results only for the
newer 2019 dataset. However, the results of preliminary experi-
ments indicate that while there is some difference in the absolute
performance of placement strategies between the 2017 and 2019
datasets, a strategy that performs better on one of the datasets
generally also performs better on the other dataset.

Like in Agarwal and Duong’s experiments, servers were config-
ured to have 32 cores and 224 GiB of memory each. The number of
servers was set to the maximum number of VMs running simulta-
neously according to the dataset.

For the experiments, the start time was set to 1. The dataset
contains a large number of VMs started at time 0, more than started
at any other time. As some of these VMs may have been started
before 0 with the dataset not specifying the order of their starts, all
VMs with a specified start time of 0 are ignored.

For some placement strategies, specific parameters had to be
set or default parameters had to be modified: To prevent next-fit
from spreading out VMs over too many servers, the number of
servers was lowered to 1.5 times the maximum number of concur-
rent servers needed by best-fit, averaged over all runs.

For LDBR, the p-values normally returned by the detection sys-
tem for malicious users need to be simulated. As Xiao et al. [29]
do not mention how they calculated these in their experiments, a
PERT distribution with a mode of 0.9 and lambda of 3.0 (resulting
in a mean of 0.74) was used to generate the p-values of malicious
users. For benign users, the mode was set to 0.1.

For the Azar strategy, the minimum number of servers kept
open for new VMs can be freely configured. For the evaluation, two
configurations were tested: 5 % and 20% of all servers. Similarly,
two configurations of the PSSF strategy were tested: The number
of servers per group was set to 5 % and 20% of all servers.

5.1 Malicious users from dataset
For the first experiment, a proportion of users was randomly chosen
to be malicious, similar to the experiments conducted by Agarwal
and Duong [1]. This means that the VM launches and shutdowns
represent real user behaviour, but it is unknown whether they
belong to a real-world malicious user. For each configuration, 50
simulation runs were performed. The same 50 seeds were used to
initialise the PRNG for different placement strategies, so that the
same sets of users were chosen to be malicious for all strategies.

Table 1 shows the core utilisation (CU), the number of server
boots (which is equal to the number of shutdowns) as well as the
average and maximum number of servers used by different place-
ment strategies. Furthermore, it shows the user- and VM-based
co-location resistance (UCLR and VMCLR, cf. Sect. 4.1). The CLR
values are based on 5 % of users being malicious. With the exception
of LDBR, the resource efficiency metrics, however, are independent
of the number of malicious users.

First-fit achieves the highest CU, slightly ahead of ‘best’-fit. They
are followed by KU, LDBR, PSSF-5 % and the random strategy. All
other strategies achieve a CU of less than 0.8. Azar-5 %, Azar-20 %,
PSSF-20 % and next-fit trail even dedicated-instance, i. e. they are
inferior to just outright avoiding co-locating VMs of different users.

The average number of servers active is directly related to the
CU: If the CU is high, fewer servers need to be active. The best-
performing first-fit strategy needs 3 726 servers on average. Next-fit,
on the other hand, needs more than 8 times as many (30 608).

The maximum number of servers needed during the experiments
provides an insight into how much hardware the provider needs to
have available. The results indicate that the ranking of the strategies
is relatively similar to those for CU and the average number of active
servers. Again, there is a wide range between the best- and worst-
performing strategies: Best-fit needs 5 678 servers, while next-fit
needs about 7.7 times as many (43 489).

LDBR performs the fewest server boots and shutdowns, closely
followed by KU. Best-fit comes third. All other strategies perform
significantly more boots and shutdowns, with Azar-5 % performing
almost 90 times as many as LDBR.

Due to not placing VMs of different users on the same server,
the dedicated-instance strategy always achieves a user-based CLR
(UCLR) of 1. PSSF-20 % achieves a comparatively good UCLR. How-
ever, remember that its CU is inferior to dedicated-instance. PSSF-
5 %, on the other hand, achieves a UCLR of just 0.1953. PCUF comes
third. Azar performs poorly, with even Azar-20 % achieving a UCLR
of just 0.1435. KU achieves a mid-field performance (0.4534). While
there are other strategies with higher UCLRs, any further improve-
ment can only be realised by accepting a significantly lower CU,
resulting in a higher number of servers needed (e. g. +16.1 % for
PCUF and +32.6 % for dedicated-instance on average) and thus
higher costs. Best-fit and first-fit, which perform best in terms of
CU, perform worst in terms of UCLR (<0.07).

For the VM-based CLR (VMCLR), dedicated-instance again achieves
perfect results. The results indicate that the VMCLR is higher than
the UCLR for all other strategies. PSSF-20 % comes into second
place. Unlike for the UCLR, KU only comes ninth with just under a
quarter of VMs being exposed to malicious users. Again, best-fit
and first-fit perform worst.

Fig. 1 shows how the CU – and thus power and cost efficiency –
changes over time for the different strategies. The value shown is
the average CU up to a point in time.

After a short warm-up phase, the CU remains relatively stable
for almost all strategies. For PSSF-5 %, however, the CU changes
drastically: It increases from ∼0.52 to ∼0.83. Further drastic changes
can be observed for the two configurations of the Azar strategy.
While these improve markedly throughout the run of the experi-
ment, their performance remains comparably poor. KU performs
relatively well (CU ≈ 0.87).

Fig. 2 shows how the CLR for new VMs (NewVMCLR) develops
over time given 5 % of malicious users. The value for each six-hour
period corresponds to the VMCLR of VMs started during the period.

For most strategies, the NewVMCLR remains relatively stable
over time. However, PSSF-5 % shows a drastic deterioration over
time. It starts out with a performance very close to the optimum,
but falls back to about 0.8. This indicates that this strategy will be
more and more susceptible to co-location attacks in continuously
operating cloud environments. While PSSF-20% also shows a de-
terioration, it is less pronounced. The NewVMCLR of KU is in the
mid-field, but remains relatively stable over time. It beats best-fit
and first-fit, the only two strategies that achieve a higher CU.

Co-location resistance vs. resource utilisation in VM placement strategies ARES 2023, August 29–September 1, 2023, Benevento, Italy

Table 1: Performance statistics of placement strategies for the full 2019 Azure dataset (strategy ranks in parentheses)

Servers 5 % malicious

Strategy CU Avg. Max. Boots UCLR VMCLR

Azar-5% 0.4828 (11) 7 167 (11) 10 583 (11) 948 521 (12) 0.1160 (9) 0.7550 (8)
Azar-20% 0.3056 (12) 11 322 (12) 13 542 (12) 436 907 (11) 0.1435 (8) 0.8234 (6)
Best-fit 0.9136 (2) 3 787 (2) 5 678 (1) 15 273 (3) 0.0681 (12) 0.5935 (12)
Ded. I. 0.6615 (9) 5 231 (9) 8 057 (9) 162 928 (9) 1.0000 (1) 1.0000 (1)
First-fit 0.9287 (1) 3 726 (1) 5 756 (2) 35 142 (5) 0.0649 (13) 0.5850 (13)
KU 0.8772 (3) 3 944 (3) 5 817 (3) 11 382 (2) 0.4534 (5) 0.7513 (9)
LDBR 0.8646 (4) 4 003 (4) 5 885 (4) 10 674 (1) 0.1444 (7) 0.7563 (7)
Next-fit 0.1130 (13) 30 608 (13) 43 489 (13) 2 211 258 (13) 0.5297 (4) 0.9896 (3)
PCUF 0.7554 (7) 4 580 (7) 6 916 (7) 59 832 (6) 0.8390 (3) 0.9062 (4)
PSSF-5% 0.8330 (5) 4 154 (5) 6 141 (5) 145 962 (8) 0.1953 (6) 0.8457 (5)
PSSF-20% 0.5613 (10) 6 164 (10) 8 780 (10) 294 399 (10) 0.9155 (2) 0.9897 (2)
Random 0.8115 (6) 4 264 (6) 6 493 (6) 20 802 (4) 0.0751 (11) 0.6323 (11)
Worst-fit 0.7387 (8) 4 684 (8) 7 153 (8) 79 196 (7) 0.0790 (10) 0.6335 (10)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 1
0

 1
5

 2
0

 2
5

 3
0

T
ot

al
 c

or
e

ut
ili

sa
ti
on

 (
C
U

)
un

ti
l t

im
e

time (days)

Azar-5%
Azar-20%

Best-fit
Ded.I.

First-fit
KU

Next-fit
PCUF

PSSF-5%
PSSF-20%

Random
Worst-fit

LDBR

Figure 1: Changes in core utilisation over time

Fig. 3 shows the UCLR for proportions of malicious users be-
tween 1% and 20 %. In line with the results of Agarwal and Duong
[1], the results indicate that an increase in the proportion of ma-
licious users leads to a reduction in UCLR. The only outlier is
dedicated-instance, for which UCLR is always 1. While the UCLR of
KU falls short of dedicated-instance, PSSF-20 %, PCUF and next-fit,
it exceeds that of all other strategies.

Overall, the KU strategy achieves a very good CU, being beaten
by just first-fit and best-fit. At the same time, it achieves a rela-
tively good UCLR, far exceeding that of first-fit and best-fit. For
all strategies that achieve a higher UCLR than KU, the CU falls
short significantly. PCUF comes closest, but its CU is still lower

by 0.1218, resulting in an increase in the average number of active
servers and thus energy consumption of 16.1 %. A disadvantage,
however, is that KU does not perform as well in terms of VMCLR: It
is outperformed by LDBR and PSSF-5 %, whose CU is slightly lower,
but still exceeds 0.83. Note, however, that these strategies performs
significantly worse in terms of UCLR, making them less suitable
for scenarios where an attack on any VM of a user would com-
pletely compromise their security. The algorithm with the highest
CU beating KU in both UCLR and VMCLR is PCUF.

Some placement strategies rely on information about which
servers a user’s VMs have previously been hosted on or which
users’ VMs have previously been co-located on the same servers.

ARES 2023, August 29–September 1, 2023, Benevento, Italy Jens Lindemann

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 1
0

 1
5

 2
0

 2
5

 3
0

V
M

-b
as

ed
 c

o-
lo

ca
ti
on

 r
es

is
ta

nc
e

(V
M

C
LR

)
of

 n
ew

 V
M

s

time (days)

Azar-5%
Azar-20%

Best-fit
Ded.I.

First-fit
KU

Next-fit
PCUF

PSSF-5%
PSSF-20%

Random
Worst-fit

LDBR

Figure 2: Changes of the co-location resistance for new VMs (NewVMCLR) over time with 5% of malicious users

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1
0

0.2
0

 0
.01

 0
.02

 0
.03

 0
.04

 0
.05

 0
.06

 0
.07

 0
.08

 0
.09

 0
.11

 0
.12

 0
.13

 0
.14

 0
.15

 0
.16

 0
.17

 0
.18

 0
.19

us
er

-b
as

ed
 c

o-
lo

ca
ti
on

 r
es

is
ta

nc
e

(U
C
LR

)

proportion of malicious users

Azar-5%
Azar-20%

Best-fit

Ded.I.
First-fit

KU

Next-fit
PCUF

PSSF-5%

PSSF-20%
Random
Worst-fit

Figure 3: User-based co-location resistance depending on the
proportion of malicious users

This means that additional data needs to be stored by the system
making the placement decisions. For PSSF-5 %, 85 787 user-server
relations had to be stored on average per run. An average of 147 684
user-user relations had to be stored per run for KU. For PCUF, 14 134
user-user relations had to be stored. For LDBR, a reputation value
has to be stored for each user, in addition to any data that is needed
for its calculation.

The results indicate that the amount of additional data which
needs to be stored per customer is negligible compared to the mem-
ory size of a VM. The amount of data that has to be stored in total
is also small enough to be handled on a central server, even for
clouds having more than the 6 687 users in the dataset used here.

While this was not a problem for the 30-day run of the evaluation,
the amount of data may rise over time due to fluctuations in the user
base. To counter this, providers could delete placement data relating
to users that were inactive for some time. While such users would
be handled like new users if they became active again, this should
not make co-location attacks significantly more likely if providers
only delete placement data after a sufficiently long inactivity period.

The results indicate that some strategies are clearly inferior to
others. Next-fit, Azar and PSSF-20 % achieve a lower CU than even
the dedicated-instance strategy, which always achieves perfect CLR.
In the configuration tested, LDBR is similar in terms of CU and
VMCLR to KU, but performs significantly worse in terms of UCLR.
Finally, the random and worst-fit strategies are beaten in CU, UCLR
and VMCLR by multiple other strategies, including KU.

Generally, there is not a single optimum placement strategy,
though. Any strategy is outperformed by others in either core
utilisation or co-location resistance. Cloud service providers must
make a trade-off between optimising resource utilisation and thus
minimising energy consumption, on the one hand, and protecting
users from being co-located with malicious users, on the other
hand.

5.2 Isochronous attacks
For isochronous attacks, an attacker does not target specific users
or VMs, but aims to be co-located with as many users or VMs as

Co-location resistance vs. resource utilisation in VM placement strategies ARES 2023, August 29–September 1, 2023, Benevento, Italy

possible. The attacker launches a fixed number of VMs in fixed
intervals. Three different isochronous attacker types were tested,
which launched 1 VM every 60 minutes (iso1), 10 VMs every 600
minutes (iso2) or 5 VMs every 60 minutes (iso3). After launching
a VM, it was left running for 10 minutes.

For each attacker type, two scenarios were considered: First, an
attacker who uses the same account for launching all of their VMs
(constant-ID scenario). On the other hand, an attacker who uses a
new account for every attack interval (dynamic-ID scenario). Note
that providers can make dynamic-ID attacks hard to perform by
thoroughly authenticating a user’s identity: If the same person tries
to sign up more than once, the second sign-up can either be denied
or be treated as if it had the same user ID as the first.

20 runs were performed for each configuration. The same PRNG
seeds were used for each placement strategy.

Table 2 shows the UCLR of different placement strategies under
isochronous attacks. For strategies not considering the user ID, the
UCLR is identical for the constant-ID and dynamic-ID scenarios.
For strategies that consider the user ID, the UCLR is lower for
dynamic-ID attacks. This trend is especially strong for PCUF, which
achieves a UCLR of 1 for constant-ID attacks, but is very susceptible
to dynamic-ID attacks. Similar drops in performance of varying
extent can be observed for PSSF-5 %, KU and LDBR.

For constant-ID attacks, there is no significant difference in the
UCLR between the iso1 and iso2 scenarios. However, the UCLR
achieved by first-fit, PSSF-5 % and worst-fit decreases, i. e. they are
more susceptible to multiple attack VMs being launched simultane-
ously than to the VM launches being spread out over time. Under
dynamic-ID attacks, the UCLR tends to be higher in the iso2 sce-
nario for strategies considering user IDs. This means that these
strategies (KU, PCUF, PSSF) are less vulnerable to attackers launch-
ing VMs in large bursts (with one user ID used per burst) instead of
individually over time. LDBR, however, is instead more vulnerable
to VMs being launched in large bursts.

In the iso3 scenario, the UCLR decreases for most strategies
compared to iso1, i. e. launching more VMs per burst increases the
success rate of an attack. However, KU, PCUF, dedicated-instance
and PSSF-20 % are mostly resistant to increasing the number of
VMs per burst.

KU outperforms all strategies exceeding its CU for isochronous
constant-ID attacks. Only dedicated-instance, PCUF and PSSF-20 %
beat it in UCLR, but achieve a much lower CU. In the dynamic-ID
scenario, KU is outperformed by many other strategies, including
the resource-efficient first-fit. Other strategies considering the user
ID in their placement decisions face the same challenge, though.

5.3 Targeted attacks
In a targeted attack, an attacker targets a specific VM of a benign
user. For this attack, we assume the attacker to have knowledge
about when a target VM is launched. This may either be due to
them being able to obtain this information, e. g. through a publicly
available performance dashboard, or because they can actively
cause a VM to be launched, e. g. by accessing a publicly available
service which launches additional VMs to process requests under
load. For the experiments, a random target VM was chosen every
300 minutes, resulting in a total of 8 638 targets per run. VMs were

then launched in one or five bursts at or around the launch time of
the targeted VM. Four targeted attacker types were tested, which
launched five bursts of ten VMs each every minute starting at the
launch time of the targeted VM (tgt1), one burst of 50 VMs one
minute after the launch of the target (tgt2), five bursts of ten VMs
each every minute starting two minutes before the launch of the
target (tgt3) or five bursts of two VMs each every minute starting
at the launch time of the target (tgt4). Attack VMs were shut down
after ten minutes. Again, two scenarios were tested: an identical
user ID throughout a run (constant-ID scenario) or a new user ID
for every target (dynamic-ID scenario). 20 runs with different sets of
malicious VMs were performed for each experiment configuration.
The same 20 sets of malicious VMs were used for all strategies.

Table 3 shows the average number of target VMs seen by an
attacker per experiment run. Again, there is no difference in re-
sults between constant-ID and dynamic-ID attacks for strategies
not considering the ownership of VMs. The results indicate that
dedicated-instance and next-fit completely prevent malicious VMs
from being co-located with their targets. PSSF-20 % and PCUF also
allow only few successful attacks in most scenarios. PCUF is, how-
ever, vulnerable to a constant-ID attacker launching VMs slightly
before the target VM (scenario tgt3). The remaining strategies con-
sidering user IDs (KU, PSSF-5 %) perform similar for constant-ID
attacks to those not considering user IDs. However, KU, PCUF and
PSSF are actually more effective at preventing dynamic-ID attacks.

With the exception of dedicated-instance, LDBR, next-fit and
worst-fit, launching all attack VMs in a single burst a minute af-
ter the target (tgt2) slightly increases the chance of an attacker
achieving co-location. For almost all strategies, beginning to launch
the first VMs two minutes before the target (tgt3) decreases the
chances of a successful attack. The chance of a constant-ID attacker
succeeding increases by more than 600 times for PCUF, though.
Launching fewer VMs (tgt4) significantly decreases the risk of a
successful attack in almost all cases. However, the risk increases
more than 100-fold for a constant-ID attack on PCUF.

With respect to the newly proposed KU strategy, the results
indicate a reversal of the trend observed for isochronous attacks:
KU is outperformed by other strategies including the resource-
efficient first-fit for constant-ID attacks. It performs respectably
under dynamic-ID attacks, though, and is only outperformed by
strategies achieving a lower CU.

6 CONCLUSION AND FUTUREWORK
This paper presents the open-source simulation framework VM-
PlaceSim for the evaluation of VM placement strategies. The sim-
ulation results offer an insight into the resource utilisation and
co-location resistance of placement strategies. The framework is
extensible: Additional placement strategies can easily be added.
Information about the VMs to be simulated can be supplied in CSV
format. Loading the publicly available Microsoft Azure datasets
[9, 10] containing real-world VM deployment data is supported.

Additionally, the paper presents the known-users (KU) place-
ment strategy. This was evaluated alongside existing strategies with
respect to effective resource utilisation and co-location resistance.
VM-based co-location resistance is introduced as an additional

ARES 2023, August 29–September 1, 2023, Benevento, Italy Jens Lindemann

Table 2: User-based CLR of different placement strategies for isochronous attackers (strategy ranks in parentheses)

Constant user ID Dynamic user ID

Strategy iso1 iso2 iso3 iso1 iso2 iso3

Azar-5% 0.2620 (11) 0.2631 (11) 0.1603 (11) 0.2620 (9) 0.2631 (11) 0.1603 (11)
Azar-20% 0.2929 (10) 0.2910 (9) 0.1791 (10) 0.2929 (7) 0.2910 (9) 0.1791 (9)
Best-fit 0.2027 (13) 0.2019 (13) 0.1276 (12) 0.2027 (12) 0.2019 (13) 0.1276 (12)
Ded. I. 1.0000 (1) 1.0000 (1) 1.0000 (1) 1.0000 (1) 1.0000 (1) 1.0000 (1)
First-fit 0.6886 (8) 0.5168 (8) 0.5683 (7) 0.6886 (4) 0.5168 (4) 0.5683 (3)
KU 0.9731 (4) 0.9611 (4) 0.9650 (4) 0.1870 (13) 0.3707 (7) 0.1731 (10)
LDBR 0.8497 (5) 0.7415 (5) 0.7651 (5) 0.6203 (5) 0.4854 (6) 0.4572 (5)
Next-fit 0.7485 (7) 0.7396 (6) 0.5282 (8) 0.7485 (3) 0.7396 (3) 0.5282 (4)
PCUF 1.0000 (1) 1.0000 (1) 1.0000 (1) 0.2147 (10) 0.4918 (5) 0.2146 (8)
PSSF-5% 0.7826 (6) 0.6192 (7) 0.6585 (6) 0.2711 (8) 0.2950 (8) 0.2257 (7)
PSSF-20% 0.9975 (3) 0.9983 (3) 0.9975 (3) 1.0000 (1) 1.0000 (1) 1.0000 (1)
Random 0.2110 (12) 0.2102 (12) 0.1244 (13) 0.2110 (11) 0.2102 (12) 0.1244 (13)
Worst-fit 0.3888 (9) 0.2889 (10) 0.2463 (9) 0.3888 (6) 0.2889 (10) 0.2463 (6)

Table 3: Average number of target VMs seen by attackers targeting 8 638 VMs per run (strategy ranks in parentheses)

Constant user ID Dynamic user ID

Strategy tgt1 tgt2 tgt3 tgt4 tgt1 tgt2 tgt3 tgt4

Azar-5% 65.6 (6) 71.0 (6) 36.4 (5) 12.6 (5) 65.6 (8) 71.0 (9) 36.4 (9) 12.6 (9)
Azar-20% 32.6 (5) 36.6 (5) 16.8 (4) 6.7 (4) 32.6 (6) 36.6 (7) 16.8 (6) 6.7 (6)
Best-fit 150.3 (12) 170.6 (13) 82.2 (11) 34.0 (11) 150.3 (12) 170.6 (13) 82.2 (12) 34.0 (12)
Ded. I. 0.0 (1) 0.0 (1) 0.0 (1) 0.0 (1) 0.0 (1) 0.0 (1) 0.0 (1) 0.0 (1)
First-fit 105.6 (8) 116.0 (8) 60.6 (7) 28.9 (9) 105.6 (10) 116.0 (10) 60.6 (10) 28.9 (11)
KU 133.5 (10) 136.7 (10) 92.3 (12) 29.7 (10) 23.4 (5) 24.8 (5) 10.7 (5) 4.6 (5)
LDBR 141.3 (11) 139.1 (11) 69.3 (10) 36.4 (12) 70.2 (9) 70.9 (8) 23.2 (7) 12.5 (8)
Next-fit 0.0 (1) 0.0 (1) 0.0 (1) 0.0 (1) 0.0 (1) 0.0 (1) 0.0 (1) 0.0 (1)
PCUF 0.1 (3) 1.3 (3) 62.4 (9) 13.9 (6) 3.6 (4) 4.2 (4) 4.1 (4) 2.9 (4)
PSSF-5% 95.0 (7) 106.1 (7) 47.4 (6) 20.4 (7) 33.3 (7) 34.0 (6) 24.5 (8) 10.9 (7)
PSSF-20% 2.1 (4) 2.5 (4) 0.0 (1) 0.0 (1) 0.1 (3) 0.0 (1) 0.3 (3) 0.3 (3)
Random 111.8 (9) 124.0 (9) 61.4 (8) 23.4 (8) 111.8 (11) 124.0 (11) 61.4 (11) 23.4 (10)
Worst-fit 179.2 (13) 153.1 (12) 103.2 (13) 39.3 (13) 179.2 (13) 153.1 (12) 103.2 (13) 39.3 (13)

metric to evaluate the security of a placement strategy against
co-location attacks and is used in the evaluation.

The results indicate that some placement strategies perform bet-
ter than certain others with respect to both criteria, such as the
dedicated-instance strategy compared to the previously-selected-
servers-first (PSSF) strategy with groups of 20 % of total servers.
While other strategies, such as previously-co-located-users-first
(PCUF), are even more resistant against co-location attacks, the
known-users (KU) strategy achieves a much higher co-location re-
sistance than any other placement strategy exceeding its resource
utilisation. Overall, there is not a single optimum placement strat-
egy: resource utilisation and co-location resistance form a trade-off.

Strategies also differ in their ability to counter specific attacker
behaviours. If an attacker always using the same user ID, strategies
considering the user ID in placement decisions are relatively good
at preventing attacks, even if these take place over a long time. If
an attacker constantly changes accounts and is not prevented from

this by the provider, these strategies lose their advantage over those
not considering the user ID, though. If attackers are able to time the
launch of their VMs around the launch of a target VM, this trend
reverses: Strategies considering the user ID in their decisions are
actually more vulnerable to attacks with a constant user ID.

Potential future work includes extending the framework to sup-
port simulating complex multi-zone cloud environments and eval-
uating placement strategies for these. More complex placement
strategies could also be examined. CPU oversubscription could also
be considered, e. g. by basing placement decisions on a prediction
of future CPU usage of VMs, as proposed by Cortez et al. [11].

Co-location resistance vs. resource utilisation in VM placement strategies ARES 2023, August 29–September 1, 2023, Benevento, Italy

REFERENCES
[1] Amit Agarwal and Ta Nguyen Binh Duong. 2019. Secure virtual machine place-

ment in cloud data centers. Future Gener. Comput. Syst. 100 (2019), 210–222.
[2] Amazon AWS. 2021. Amazon EC2 Dedicated Instances. https://aws.amazon.com/

ec2/pricing/dedicated-instances/ (visited 2023-03-16).
[3] Ahmed Osama Fathy Atya, Zhiyun Qian, Srikanth V. Krishnamurthy, Thomas La

Porta, Patrick D. McDaniel, and Lisa M. Marvel. 2019. Catch Me if You Can: A
Closer Look at Malicious Co-Residency on the Cloud. IEEE/ACM Trans. Netw. 27,
2 (2019), 560–576.

[4] Yossi Azar, Seny Kamara, IshaiMenache,Mariana Raykova, and F. Bruce Shepherd.
2014. Co-Location-Resistant Clouds. In ACM Cloud Computing Security Workshop,
CCSW. ACM, 9–20.

[5] Antonio Barresi, Kaveh Razavi, Mathias Payer, and Thomas R. Gross. 2015. CAIN:
Silently Breaking ASLR in the Cloud. In USENIX Workshop on Offensive Technolo-
gies, WOOT. USENIX Association.

[6] D. F. C. Brewer and Michael J. Nash. 1989. The Chinese Wall Security Policy. In
IEEE Symposium on Security and Privacy,. IEEE Computer Society, 206–214.

[7] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César A. F. De Rose, and
Rajkumar Buyya. 2011. CloudSim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algorithms.
Softw. Pract. Exp. 41, 1 (2011), 23–50.

[8] Ron Chi-Lung Chiang, Sundaresan Rajasekaran, Nan Zhang, andH. HowieHuang.
2015. Swiper: Exploiting Virtual Machine Vulnerability in Third-Party Clouds
with Competition for I/O Resources. IEEE Trans. Parallel Distributed Syst. 26, 6
(2015), 1732–1742.

[9] Eli Cortez. 2017. AzurePublicDatasetV1. https://github.com/Azure/
AzurePublicDataset/blob/79bca52b02b87d64e332de5533d417981abb3f90/
AzurePublicDatasetV1.md (visited 2023-03-16).

[10] Eli Cortez. 2019. AzurePublicDatasetV2. https://github.com/Azure/
AzurePublicDataset/blob/79bca52b02b87d64e332de5533d417981abb3f90/
AzurePublicDatasetV2.md (visited 2023-03-16).

[11] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura,
and Ricardo Bianchini. 2017. Resource Central: Understanding and Predicting
Workloads for Improved Resource Management in Large Cloud Platforms. In
Symposium on Operating Systems Principles, SOSP. ACM, 153–167.

[12] Daniel Espling, Lars Larsson, Wubin Li, Johan Tordsson, and Erik Elmroth. 2016.
Modeling and Placement of Cloud Services with Internal Structure. IEEE Trans.
Cloud Comput. 4, 4 (2016), 429–439.

[13] Mauro Gaggero and Luca Caviglione. 2019. Model Predictive Control for Energy-
Efficient, Quality-Aware, and Secure Virtual Machine Placement. IEEE Trans
Autom. Sci. Eng. 16, 1 (2019), 420–432. https://doi.org/10.1109/TASE.2018.2826723

[14] Berk Gülmezoglu, Thomas Eisenbarth, and Berk Sunar. 2017. Cache-Based
Application Detection in the Cloud Using Machine Learning. In ACM ASIA
Conference on Computer and Communications Security, ASIACCS. ACM, 288–300.

[15] Ori Hadary, Luke Marshall, Ishai Menache, Abhisek Pan, Esaias E. Greeff, David
Dion, Star Dorminey, Shailesh Joshi, Yang Chen, Mark Russinovich, and Thomas
Moscibroda. 2020. Protean: VMAllocation Service at Scale. In USENIX Symposium
on Operating Systems Design and Implementation, OSDI. USENIX Association,
845–861.

[16] Yi Han, TansuAlpcan, Jeffrey Chan, and Christopher Leckie. 2013. Security Games
for Virtual Machine Allocation in Cloud Computing. In Conference Decision and
Game Theory for Security, GameSec. Springer, 99–118.

[17] Yi Han, Jeffrey Chan, Tansu Alpcan, and Christopher Leckie. 2017. Using Virtual
Machine Allocation Policies to Defend against Co-Resident Attacks in Cloud
Computing. IEEE Trans. Dependable Secur. Comput. 14, 1 (2017), 95–108.

[18] Brian Hay, Kara L. Nance, and Matt Bishop. 2011. Storm Clouds Rising: Security
Challenges for IaaS Cloud Computing. In Hawaii International Conference on
System Sciences, HICSS. IEEE Computer Society.

[19] Yoongu Kim, Ross Daly, Jeremie S. Kim, Chris Fallin, Ji-Hye Lee, Donghyuk Lee,
Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2014. Flipping bits in memory
without accessing them: An experimental study of DRAM disturbance errors.
In ACM/IEEE International Symposium on Computer Architecture, ISCA. IEEE
Computer Society, 361–372.

[20] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In
IEEE Symposium on Security and Privacy. IEEE, 1–19.

[21] Younggyun Koh, Rob C. Knauerhase, Paul Brett, Mic Bowman, Zhihua Wen, and
Calton Pu. 2007. An Analysis of Performance Interference Effects in Virtual En-
vironments. In IEEE International Symposium on Performance Analysis of Systems
and Software, ISPASS. IEEE Computer Society, 200–209.

[22] Jens Lindemann andMathias Fischer. 2018. Amemory-deduplication side-channel
attack to detect applications in co-resident virtual machines. In ACM Symposium
on Applied Computing, SAC. ACM, 183–192.

[23] MohammadMasdari, Sayyid ShahabNabavi, and Vafa Ahmadi. 2016. An overview
of virtual machine placement schemes in cloud computing. J. Netw. Comput.
Appl. 66 (2016), 106–127.

[24] Soo-Jin Moon, Vyas Sekar, and Michael K. Reiter. 2015. Nomad: Mitigating Arbi-
trary Cloud Side Channels via Provider-Assisted Migration. In ACM Conference
on Computer and Communications Security, CCS. ACM, 1595–1606.

[25] Diego Perez-Botero, Jakub Szefer, and Ruby B. Lee. 2013. Characterizing hyper-
visor vulnerabilities in cloud computing servers. In International Workshop on
Security in Cloud Computing, SCC. ACM, 3–10.

[26] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. 2009. Hey,
you, get off of my cloud: exploring information leakage in third-party compute
clouds. In ACM Conference on Computer and Communications Security, CCS. ACM,
199–212.

[27] Venkatanathan Varadarajan, Yinqian Zhang, Thomas Ristenpart, and Michael M.
Swift. 2015. A Placement Vulnerability Study in Multi-Tenant Public Clouds. In
USENIX Security Symposium. USENIX Association, 913–928.

[28] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Raoul Strackx, Thomas F Wenisch, and Yuval Yarom.
2018. Foreshadow-NG: Breaking the virtual memory abstraction with transient
out-of-order execution. Technical Report. KU Leuven. https://lirias.kuleuven.be/
2089352?limo=0 (visited 2023-03-16).

[29] Yiming Xiao, Liang Liu, Zuchao Ma, Zijie Wang, and Weizhi Meng. 2021. De-
fending co-resident attack using reputation-based virtual machine deployment
policy in cloud computing. Trans. Emerg. Telecommun. Technol. 32, 9 (2021).

[30] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu. 2016. One Bit
Flips, One Cloud Flops: Cross-VM Row Hammer Attacks and Privilege Escalation.
In USENIX Security Symposium. USENIX Association, 19–35.

[31] Zhang Xu, Haining Wang, and Zhenyu Wu. 2015. A Measurement Study on
Co-residence Threat inside the Cloud. In USENIX Security Symposium. USENIX
Association, 929–944.

[32] Shungeng Zhang, Huasong Shan, Qingyang Wang, Jianshu Liu, Qiben Yan, and
Jinpeng Wei. 2019. Tail Amplification in n-Tier Systems: A Study of Transient
Cross-Resource Contention Attacks. In IEEE International Conference on Dis-
tributed Computing Systems, ICDCS. IEEE, 1527–1538.

[33] Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee. 2017. DoS Attacks on Your
Memory in Cloud. In ACM ASIA Conference on Computer and Communications
Security, AsiaCCS, Ramesh Karri, Ozgur Sinanoglu, Ahmad-Reza Sadeghi, and
Xun Yi (Eds.). ACM, 253–265.

[34] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. 2012. Cross-
VM side channels and their use to extract private keys. In ACM Conference on
Computer and Communications Security, CCS. ACM, 305–316.

https://aws.amazon.com/ec2/pricing/dedicated-instances/
https://aws.amazon.com/ec2/pricing/dedicated-instances/
https://github.com/Azure/AzurePublicDataset/blob/79bca52b02b87d64e332de5533d417981abb3f90/AzurePublicDatasetV1.md
https://github.com/Azure/AzurePublicDataset/blob/79bca52b02b87d64e332de5533d417981abb3f90/AzurePublicDatasetV1.md
https://github.com/Azure/AzurePublicDataset/blob/79bca52b02b87d64e332de5533d417981abb3f90/AzurePublicDatasetV1.md
https://github.com/Azure/AzurePublicDataset/blob/79bca52b02b87d64e332de5533d417981abb3f90/AzurePublicDatasetV2.md
https://github.com/Azure/AzurePublicDataset/blob/79bca52b02b87d64e332de5533d417981abb3f90/AzurePublicDatasetV2.md
https://github.com/Azure/AzurePublicDataset/blob/79bca52b02b87d64e332de5533d417981abb3f90/AzurePublicDatasetV2.md
https://doi.org/10.1109/TASE.2018.2826723
https://lirias.kuleuven.be/2089352?limo=0
https://lirias.kuleuven.be/2089352?limo=0

	Abstract
	1 Introduction
	2 Related work
	3 Placement strategies
	3.1 Existing strategies
	3.2 Known-users (KU) strategy

	4 Simulation framework
	4.1 Supported metrics

	5 Evaluation
	5.1 Malicious users from dataset
	5.2 Isochronous attacks
	5.3 Targeted attacks

	6 Conclusion and future work
	References

