
Data Minimisation Potential for Timestamps in
Git: An Empirical Analysis of User

Configurations

Christian Burkert, Johanna Ansohn McDougall, and Hannes Federrath

University of Hamburg, Hamburg, Germany
{christian.burkert, johanna.ansohn.mcdougall,

hannes.federrath}@uni-hamburg.de

The final publication is available at Springer via https://doi.org/10.1007/978-3-031-06975-8_19

Abstract With the increasing digitisation, more and more of our activ-
ities leave digital traces. This is especially true for our work life. Data
protection regulations demand the consideration of employees’ right to
privacy and that the recorded data is necessary and proportionate for the
intended purpose. Prior work indicates that standard software commonly
used in workplace environments records user activities in excessive de-
tail. A major part of this are timestamps, whose temporal contextualisa-
tion facilitates monitoring. Applying data minimisation on timestamps
is however dependent on an understanding of their necessity. We provide
large-scale real-world evidence of user demand for timestamp precision.
We analysed over 20 000 Git configuration files published on GitHub with
regard to date-related customisation in output and filtering, and found
that a large proportion of users choose customisations with lower or ad-
aptive precision: almost 90% of chosen output formats for subcommand
aliases use reduced or adaptive precision and about 75% of date filters
use day precision or less. We believe that this is evidence for the viabil-
ity of timestamp minimisation. We evaluate possible privacy gains and
functionality losses and present a tool to reduce Git dates.

Keywords: Privacy · Data Minimisation · Timestamps · Timestamp Precision

1 Introduction

In increasingly digital work environments, employees’ digital and non-digital
work steps leave traces of their activities on computer systems. Employers, su-
pervisors and analysts see such data as a resource and opportunity to gain in-
telligence for business optimisation. Without strong consideration of employees’
right to privacy, such legitimate interests might easily lead to excessive and in-
vasive monitoring, even without the employees noticing. Recent reports about
mass lay-offs at the game design company Xsolla show that automatic monitor-
ing of employee performance based on software activity logs is already done in
practice [7]. Such invasions of employee privacy are however restricted by data

https://doi.org/10.1007/978-3-031-06975-8_19


2 C. Burkert et al.

protection regulations like GDPR, which requires that the processing of personal
data is necessary and proportionate for and limited to the intended purpose.

Software design can contribute to the protection of employee privacy by re-
ducing the amount and detail of data that is stored about user interaction to
such a necessary minimum. Prior work, however, indicates that software com-
monly used in workplaces records especially timestamps in excessive detail [2].
It shows that timestamps are not only often unused, but might otherwise also
be of unnecessarily high precision. As timestamps allow an easy temporal pro-
filing of employee activities, a reduction in precision could directly reduce the
risk of profiling-related discrimination. For instance, a reduction can prevent the
inference of intervals between successive work steps and thus mitigate the mon-
itoring of speed and performance. Identifying the necessary level of precision is,
of course, dependent on the domain and respective user demand. Nonetheless,
similar precision demands can be expected for interactions of similar kind and
frequency. In that sense, insights into which levels of timestamp precision are
selected by workers if they have the choice, can inform the selection of more
appropriate default precisions in software design. We argue that when users con-
figure their tools to precisions that are lower than the default, this implies that
the lower precision is still sufficient for them to fulfil their tasks. Therefore, user
customisation is an indicator for users’ demand for timestamp precision. With
an informed understanding of users’ demands, developers can then built software
with demand-proportionate timestamping and privacy-friendly defaults.

To the best of our knowledge, we provide the first large-scale real-world
analysis of user demand for timestamp precision. Our analysis is based on con-
figuration files for the popular revision control system Git, that users have made
publicly available on GitHub. Git is a standard tool for software development
workers and its recording of worker activity in the form of commits, contrib-
utes significantly to the overall traces that developers leave during a workday.
Commit dates have been used to infer privacy sensitive information like tem-
poral work patterns [3] and coding times [17]. The analysed configurations can
contain various preferences that customise the way Git presents dates, including
their precision. For instance, using the date formats iso or short would indicate a
high (second) or low (day) precision demand respectively. We also examined the
precision of filters (e.g., 8 hours ago) used to limit the range of outputs. In total,
we analysed over 20 000 configuration files. We make the following contributions:

– We compile and provide a comprehensive large-scale dataset of date-related
usage features extracted from publicly available Git configs.

– We provide empirical evidence for the demand of date precision by users, as
determined by the precision of user selected date formats.

– We discuss and evaluate privacy gain and functionality loss.
– We present a utility that allows users to redact their Git timestamps.

The remainder is structured as follows: Section 2 presents related work. Section 3
provides a necessary background on Git and its date handling. We describe the
acquisition and analysis of our Git config dataset in Sect. 4 and Sect. 5, and
discuss findings, issues and applications in Sect. 6. Section 7 concludes the paper.



Data Minimisation Potential for Timestamps in Git 3

2 Related Work

To the best of our knowledge, we are the first to gather empirical evidence for
the potential of data minimisation in timestamps. In prior work, we inspected
application source code in order to assess the programmatic use of timestamps in
application data models [2]. The case study of the Mattermost application found
that most user-related timestamps have no programmatic use and only a small
fraction are displayed on the user interface. We addressed the potential to apply
precision reduction to user-facing timestamps. However, the code analysis could
not provide any indication of acceptable levels of reduction. More work has been
done on the exploitation of Git timestamps and the potential privacy risks. Claes
et al. [3] use commit dates to analyse temporal characteristics of contributors
to software projects. Eyolfson et al. [6] use dates to find temporal factors for
low-quality contributions. Wright and Ziegler [17] train probabilistic models on
individual developers’ committing habits in an effort to remove noise from coding
time estimations. Traullé and Dalle [16] analyse the evolution of developers’ work
rhythms based on commit dates. Following a more general approach, Mavriki and
Karyda [13] analyse privacy threats arising from the evaluation of big data and
their impact on individuals, groups and society. Drakonakis et al. [4] evaluate
privacy risks of meta data with a focus on online activity in social media and,
e. g., try to infer location information from publicly available data. No work
seems to exist that proposes or evaluates temporal performance metrics. Slagell
et al. [15] proposes time unit annihilation, i. e., precision reduction, to make
timestamps less distinct and sensitive. Looking at developer behaviour, Senarath
and Arachchilage [14] found that while developers typically do not program in a
way that fulfils data minimisation, being made aware of its necessity made them
apply the principle across the whole data processing chain. With this paper, we
also strive to raise the awareness for minimisation of temporal data.

3 Theoretical Background: Git and Date Handling

This section provides a background on Git’s time and date configuration options.
Experts in Git and its date and pretty formatting may jump directly to Sect. 4.

Git’s command line interface exposes individual actions like creating a com-
mit or listing the history via subcommands like git commit or git log. Their
behaviour can be configured via command line arguments and—to some extent—
via settings made in configuration files. Frequently used combinations of subcom-
mands and arguments can be set as shortcuts via so-called aliases, similar to shell
aliases. For example, the shortcut git ly set in Listing 1.1 configures the log
subcommand to list all commits since yesterday.
In the following, we describe the role and creation of dates in Git and then
explain the date-related features that will be empirically analysed later.



4 C. Burkert et al.

Listing 1.1: Examplary Git config
[alias]

ly = log --date=human --since=yesterday
[blame]

date = short
[pretty]

my = %h %an (%ai)

Table 1: Git’s built-in date formats and their precision.
Name Suffix Precision Example(s)

default - second Wed Sep 22 14:57:31 2021 +0200
human - day to second Sep 21 2021 / 7 seconds ago
iso i/I second 2021-09-22 14:57:31 +0200
raw - second 1632315451 +0200
relative r year to second 7 years ago / 7 seconds ago
rfc D second Wed, 22 Sep 2021 14:57:31 +0200
short s day 2021-10-04
unix t second 1632315451

3.1 Dates in Git

Git associates two types of dates with each commit: the author date and the
committer date. Both are usually automatically set to the current date and
time, except in case of operations that modify existing commits (e.g., rebases
or cherry picks): Here, only the committer date will be updated, but the author
date stays as is. Consequently, the author date reflects the time of an initial
composition, while the committer date reflects the time of an insertion in the
history. Both dates are recorded as seconds since the Unix epoch. Changes to the
date precision are not supported by Git. For commit creation, users can provide
custom dates through environment variables to use instead of the current. This
interface could be used by users to manually set dates with reduced precision.
This is however not supported for commands that modify commits in bulk. Here,
precision reduction is only possible after the fact, by rewriting the history.

3.2 Features for Date Presentation and Filtering

Date Formatting. Date formatting is available for subcommands like log and
show for commit history information, and also for commands that annotate the
content of tracked files with commit metadata like blame or annotate. The
formatting option customises how Git renders author and committer dates in
the command outputs.

Git offers built-in date formats listed in Table 1 and the option for cus-
tom format strings which are passed to the system’s strftime implementa-
tion. The chosen format influences the precision of the displayed date. Five of



Data Minimisation Potential for Timestamps in Git 5

Table 2: Git offers predefined (built-in) pretty formats that vary in which dates
they show and with what date format (Table 1) those are formatted by default.
Some built-ins are fixed to that default and can not be changed by date options.
Built-in full oneline short medium reference email mboxrd fuller raw

Dates used none author both
Date Format - - - default short rfc rfc default raw
Fixed Format - - - - - ✓ ✓ - ✓

the eight built-in formats show the full second precision but in different styles
like ISO 8601. The others reduce the displayed date precision: short omits the
time, and both human and relative use variable precisions that are exact (to
the second) when the respective date is recent, and gradually less precise with
growing temporal distance. Date formats can be set via the command line option
--date or via config settings for the log and blame family of subcommands.

Pretty Formatting. Pretty formatting allows the customisation of commit
metadata presentation by commands like log or show, including the names and
email addresses of author and committer as well as the dates mentioned above.
Like for date formatting, Git offers built-in formats as well as custom format
strings with placeholders for each available piece of commit metadata.

Each built-in implies which dates are used (author, committer, or both) and
a date format, that—with some exceptions—can be adapted via date options
(see Table 2). In custom formats, the relevant placeholders are %ad for author
dates and %cd for committer dates. The built-in date formats (cf. Sect. 3.2)
are available as modifiers. For instance, %cr will set the committer date in the
relative format. Hence, placeholders offer a way to adjust dates separately for
each type and independently of other configurations. As shown in Listing 1.1,
custom pretty formats can also be set as aliases in a config.

Date Filtering. Some Git subcommands offer limiting their output based on
temporal constraints. By passing --since or --until to log, it will list only
commits committed since or until the given reference. References can be given in
a wide range of syntaxes and formats, as absolute points in time, time distances,
and combinations thereof (e. g., April 2020, 01/01 last year, or 8 hours ago).
Git understands a set of common temporal reference points like midnight or
yesterday. We call those points of reference.

4 Dataset Acquisition

The basis for our analysis of timestamp precision demand are Git configuration
files (configs). To the best of our knowledge, there was no previously available
dataset of Git configs or derivations thereof. For that reason, we compiled a



6 C. Burkert et al.

dataset based on configs that users published on GitHub. This section describes
the identification of the relevant files, their extraction, de-duplication, and the
subsequent feature extraction. We also discuss ethical and privacy concerns.

4.1 File Identification and Extraction

Git supports a multi-level hierarchy of configs from the individual repository
level to the user and system level [9, git-config]. We limited our data acquisition
to user-level configs, in which users typically set their personal preferences and
customisations. These configs are located as .gitconfig in the user’s home dir-
ectory. GitHub recognises these files in repositories hosted on their service and as-
signs them the Git Config content language tag. To perform automatic searches,
we used the code search endpoint of GitHub’s REST API [11]. Due to strict rate
limiting and the high load that large-scale code searches might induce on Git-
Hub’s servers, we added another condition to narrow down the search to configs
that include alias definitions. The resulting search is alias language:"Git Config".
We ran the acquisition on Sep 17th, 2021. It yielded 23 691 matching files.

The code search API returns a paginated list including URLs to access the
matching files. To obtain all files, we had to overcome GitHub’s limitation to
return at most 10 pages per query with 100 items each. To do so, we built a
crawler that finds small enough sub-queries by using file size constraints. We
found that result pages are not necessarily filled to their full 100 items, probably
due to pre-emptive processing. We extracted 20 757 matches (88%).

4.2 De-duplication

Users might include the same config multiple times in the same or different repos-
itories. To avoid an overrepresentation of users through duplicates, we compared
the cryptographic hashes of each config: If a hash occurred more than once within
the namespace of the same user, we included only one instance in our dataset. If
namespaces differed, we included both instances. We argue that the latter does
not constitute a duplicated representation, but a legitimate appropriation by an-
other user and should therefore be counted. Also note that GitHub’s Search API
does not index forks unless their star count is higher than their parent’s [11].
Forks do therefore not introduce unwanted duplicates to our dataset.

We identified and excluded 345 duplicates, i. e., configs that occurred re-
peatedly in the same namespace. We noticed 554 re-uses of configs in different
namespaces. After de-duplication, our dataset comprised configs from 19 468
unique users. 695 users (3.6%) contributed multiple non-identical configs, which
accumulate to 1637 configs (8.4%). We argue that those configs should not be ex-
cluded, as users might use different configs in different contexts to serve different
use cases. Hence, we include them to capture as many use cases as possible.

4.3 Feature Extraction

Having extracted the content of matching configs from GitHub, we subsequently
tried to parse each config and extract usage information about the date-related



Data Minimisation Potential for Timestamps in Git 7

Table 3: Support for date-related features in Git subcommands.
annotate blame diff-tree log rev-list shortlog show whatchanged

date ✓† ✓ ✓* ✓ ✓ ✓* ✓
pretty ✓ ✓ ✓ ✓ ✓
since/until ✓ ✓ ✓ ✓ ✓* ✓

*=undocumented, †=disfunctional

features described in Sect. 3. In the following, we first describe our process of
finding and verifying Git subcommands that support the features in question.
After that, we briefly describe the extraction result.

To ensure that all relevant subcommands were regarded during extraction,
we first searched and inspected the manual pages of each subcommand for the
respective command line options. To compensate for any incompleteness or in-
correctness in the manuals, we performed automatic tests to check whether any
of the date-related options are accepted and make a difference to the resulting
output. As a result, we identified discrepancies in terms of undocumented feature
support as well as non-functioning documented support (in Git version 2.29.2),
which we extracted nonetheless. The feature support is shown in Table 3.

We performed the feature extraction on all downloaded configs. 41 configs
could not be parsed due to invalid syntax. The extraction result comprises usage
counts for all options described above as well as derived precision information.
We have made the dataset available on GitHub [1].

4.4 Potential Ethical and Privacy Concerns

Compiling a dataset of users’ Git configurations might raise concerns about the
ethics of data extraction or user privacy. We carefully designed our process to
address potential concerns.

Code search queries cause a higher load for GitHub than other requests.
However, using it enabled us to significantly reduce the total number of quer-
ies compared to alternative approaches like searching for repositories named
dotfiles (about 150 000 matches). Conducting a pure filename based search is
also only possible via code search and would have yielded more than three times
as many results without the constraint of the alias keyword. We are therefore
convinced that our approach minimised the load on GitHub compared to other
approaches. In general, we followed GitHub’s best practices [10].

Regarding user privacy, our dataset only includes configs that users made
public on GitHub. The common practice of publishing dotfile repositories follows
the spirit of sharing knowledge with the community and providing others with a
resource of proven configurations. However, we cannot rule out that an unknown
proportion of users uploaded their configuration accidentally or not knowing that
it will be public. Our extraction is therefore designed to only extract feature
usage counts and no free-form data. This ensures that no identifying information,



8 C. Burkert et al.

Table 4: Alias definitions and date-related feature usage in the dataset.
Aliases Mean Std. Q1 Q2 Q3

subcommand 15.5 22.4 4 9 19
- shell 3.5 8.6 0 1 4
- log-like 2.3 3.1 1 1 3
- blame-like 0.0 0.2 0 0 0
- filter capable 2.3 3.3 1 1 3
pretty format 0.0 0.3 0 0 0

(a) Descriptive statistics about the ab-
solute frequencies of subcommand aliases
with sub-types as well as pretty format ali-
ases per config. (Qi: i-th quartile)

in % total date pretty since

annotate 28 0.0 - -
blame 396 2.0 - 0.0
diff-tree 169 0.0 0.0 -
log 41 467 23.7 76.4 2.5
rev-list 194 0.0 5.7 0.5
shortlog 2202 - - 4.8
show 3440 9.0 19.0 0.1
whatchanged 553 3.6 14.7 -

(b) Relative frequency of feature usage in
aliases for subcommands (if supported).

sensitive data or unwanted disclosures like cryptographic secrets are included.
We thus deemed it unnecessary to seek approval from the university ethics board.

5 Data Analysis

The extracted config features are the basis for our analysis described in this
section. To put the findings into perspective, we first provide some basic statistics
about the composition of our dataset, before we then analyse users’ choices for
formatting and filtering, and derive date precisions from them.

We extracted features from 20 369 files. Table 4a provides descriptive statist-
ics about the per-config frequencies of subcommand and pretty format aliases.
Overall, we extracted 315 520 definitions of subcommand aliases. On average,
each config provided 15.5 such aliases. We identified and excluded in total 71 727
(23%) aliases with shell expressions. Table 4b provides relative occurrences of
features accumulated per subcommand. We found that pretty formatting is very
commonly used for log (76%), but less for other subcommands. Date formatting
is used fairly often for log as well (24%), but far less for others.

5.1 Date Formatting

We analysed the usage of date formats in subcommand aliases and the two config
settings for log and blame. The usage in subcommand aliases is dominated by
aliases for log (see Fig. 1a), since almost a quarter of the more than 41 000 log
aliases use date formatting. The prevalent formats are relative and short. Aliases
for the show subcommand predominantly use the short option.

We saw a low use of the settings log.date and blame.date. Only 491 log
and 68 blame date formats were set by users, less than 10% of which are custom
format strings (see Fig. 1b). The relative format is again the most popular, but
in contrast to command aliases, short is only forth after iso and default. Note



Data Minimisation Potential for Timestamps in Git 9

custom
default

human iso raw
relative rfc short unix

0

1000

2000

3000

4000
annotate
blame
diff-tree
log
rev-list
show
whatchanged

(a) used with --date in command aliases

custom
default

human iso raw
relative rfc short unix

0.00

0.05

0.10

0.15

0.20
date setting

blame
log

(b) used for config settings

Figure 1: Distribution of date formatting options used as arguments in subcom-
mand aliases or as config settings. The most frequent options vary noticeably
between those contexts: short is much less common in settings than in aliases.

Table 5: Date usage in pretty formats across all configuration options.
built-in [%] custom [%]

total none author committer both none author committer both

command aliases 32 430 31.1 0.5 0.0 1.3 9.9 28.1 27.3 1.5
pretty aliases 594 0.0 0.0 0.0 0.3 15.2 48.0 30.0 6.6
format.pretty 603 10.0 2.0 0.0 6.6 1.3 48.6 29.4 2.2

that the high number for the default format is due to users having selected the
default-local option. As localisation does not factor into date precision, we have
counted all localised options for their non-localised correspondent.

Due to the overall low adoption of custom date format strings in conjunc-
tion with their comparatively complex and system-dependent interpretation, we
omitted them from further analysis.

5.2 Pretty Formatting

Date Usage. We analysed which (if any) date types are used in pretty formats
for command aliases, pretty.* aliases, and the format.pretty setting. For
built-in formats, we classified the date use according to documentation [9, git-
log], which we verified experimentally. For custom formats, we considered a date
type as present if the corresponding placeholder (e.g., %ad for author) is con-
tained and not escaped. If we encountered the use of a user-defined format alias,
we resolved the alias and proceeded as if the resolved format was directly used.
The results are shown in Table 5 and described in the following.

Pretty usage in command aliases is also dominated by log. Over three
quarters of all log aliases use pretty formatting. The largest proportion of these



10 C. Burkert et al.

date ISO relative RFC short unix0.0

0.2

0.4

0.6

0.8
diff-tree
log
rev-list
show
whatchanged

author
committer

(a) custom formats in subcommand aliases

date ISO relative RFC short unix0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
pretty aliases
(author)
pretty aliases
(committer)
format.pretty
(author)
format.pretty
(committer)

(b) format aliases and format.pretty

Figure 2: Relative distribution of date modifier usage in pretty formatting. The
relative and date modifiers are most commonly used across all config options.

formats use no dates at all. 31% are built-ins with no date and about 10%
are date-less custom format strings. We found that oneline with over 90%
is the only built-in with frequent use in aliases. Custom formats with either
author or committer date are used in around a quarter of formats each. Formats
with both dates make up less than 3% combined. Regarding pretty format
aliases, we extracted 594 uses, which are almost entirely user-defined formats.
Their date usage varies significantly from subcommand aliases: Almost half the
formats exclusively use author dates and 30% exclusively use committer dates.
15% contain no dates. Regarding format.pretty settings, we found 603 configs
that use this feature. Here, most occurrences of built-in formats have no (10%) or
both dates (7%). The usage of exclusive author and committer dates in custom
formats closely corresponds to our observation for pretty aliases, with about 80%
combined. However, only about 1% are custom formats with no date. It appears
that demand for date-less formatting is satisfied by built-in formats.

Date Modifiers. As described in Sect. 3.2, custom pretty formats in addition
to choosing the desired date type, also allow a rudimentary date formatting.

For command aliases, date and relative are the most common modifiers (see
Fig. 2a). More than 75% of committer and 40% of author dates use the relative
modifier. The short date format receives almost no usage. The date modifier,
which makes the output dependent on --date and related settings, is used for
about 40% of author dates and about 15% of committer dates. The modifier
usage in pretty format aliases is illustrated in Fig. 2b (blue bars). Most used
is the relative format with combined over 50%, followed by the adaptive date
modifier with about 35%. The usage in format.pretty settings is depicted by
the green bars in Fig. 2b. Similar to format aliases, date and relative are by far
the most used modifiers with about 40 and 55% each.



Data Minimisation Potential for Timestamps in Git 11

0.0 0.2 0.4 0.6 0.8 1.0

log-like
--date

blame-like
--date

blame.date

log.date

format.pretty

pretty aliases

--pretty

N=9577

N=7

N=63

N=439

N=535

N=504

N=18636

day
variable
second

Figure 3: Distributions of date output precision across the formatting options.
Second precision is least common in alias definitions for log-like subcommands
(regarding --pretty and --date) which also have the most frequent use.

5.3 Resulting Date Output Precisions

Based on the previous analysis, we could determine the precisions of dates dis-
played as a result of using the extracted configs. The precision directly follows
from the used date format (see Table 1) and can be either second, day, or vari-
able. The effective precision of variable formats depends on the recency of the
event and ranges between day and second. As we cannot resolve this variability,
we will leave it as a third precision in between. Formats with no dates are not
considered in this section.

For subcommand aliases supplying explicit --pretty formats, we pro-
ceeded differently for built-in and custom formats: For built-ins a with fixed date
format, the precision directly follows from the fixed format. For instance, email
hard-codes the rfc format which has a precision of seconds. The precision of all
other built-ins is determined by the --date option, or—if none is given—by the
log.date setting or its default, the default date format. The same date format
resolution applies, if custom pretty formats use the date modifier. Otherwise, the
resulting precision directly follows from the used modifier. Note that the about
1.5% of custom pretty formats that use both date types could therefore use a
different precision per type. In that case, we considered the higher precision of
the two for our further analysis. For that purpose, we used the following sort se-
quence of precisions: day < variable < second. Fig. 3 illustrates, e. g., that 60%
of subcommands’ pretty formatting that contains date information effectively
display it with a variable precision. And over 90% of pretty-capable (log-like)
aliases that supply --date options display with variable or day precision.



12 C. Burkert et al.

We applied the same evaluation to pretty formats set as format aliases and
the format.pretty option. Since both settings are taken outside the context of
a command invocation, considering possible --date options is not applicable.
Otherwise, we followed the process described above to determine the applicable
date format, including considering potential log.date options. In contrast to
subcommand aliases, day precision outputs are negligible and second precision
output is much more common with about 50 to 60% (see Fig. 3).

5.4 Date Filters

We found that date filter usage is again dominated by log. In general, it appears
to be an infrequently used feature, with only 2.5% among log aliases. In relative
terms, it is most commonly used in shortlog aliases. We also found that among
the date filtering options, --since makes up for almost the entire feature us-
age, whereas --until is almost exclusively used in combination with since. All
figures include the alternative names --after and --before.

Extraction Methodology. In contrast to date formatting, the precision of
filters does not follow directly from a set of predefined options. Moreover, the
leniency of the filter parser makes it difficult to cover all allowed inputs during
precision classification. For that reason, we decided to directly use Git’s parser
code for our analysis. We sliced the responsible functionality from the official Git
source code [8, v2.32.0-rc2] and linked the functions with our analysis tool. We
instrumented Git’s date parser at 25 locations to keep track of the smallest unit
of time addressed by a filter. This is illustrated by the following two examples:

1 hour︸ ︷︷ ︸
hour

30 minutes︸ ︷︷ ︸
minute

ago yesterday︸ ︷︷ ︸
day

5pm︸︷︷︸
hour

In the first example, the smallest unit is given in minutes, so we consider the
filter to have minute precision. In the second example, the smallest unit is given
by the full hour, thus we consider the filter to have hour precision. We excluded
date filters containing shell command substitutions, of which we identified 26
(2.2%). Another 7 were rejected by Git as invalid, leaving 1156 valid filters.

Precision Classification. When classifying date filter precision, the question
arises whether the hour 0 should be treated as hour precision like every other
hour value, or as an indicator for the lower day precision. In order to not under-
estimate the demand for precision, we assumed the hour precision. This is also
in concordance with the midnight point of reference (POR). The available pre-
cision levels are the date unit based precisions year to second (including week),
supplemented by the undefined precision which is assigned if date filters use the
PORs now or never which allow no classification. Fig. 4 illustrates the resulting
precisions. Most date filters are in the day precision (46%), followed by hour
(23%) and week (18%). Precisions higher than hour make up less than 0.5%.



Data Minimisation Potential for Timestamps in Git 13

year
month week day

hour
minute

second
undef.

0.0

0.1

0.2

0.3

0.4
subcommand

blame
log
rev-list
shortlog
show

Figure 4: Overall distribution of precisions that are implied by the date filters
used for the --since or --until options in subcommand aliases. Day precision
is by far the most common. Filters with precisions higher than hour have almost
no use at all.

6 Discussion

In the following, we discuss the privacy gain and functionality loss related to
precision reduction, as well as possible objections to the representativeness of
our dataset. Additionally, we present options to reduce date precision in Git.

6.1 Privacy Gain and Functionality Loss

In principle, the GDPR mandates data minimisation regardless of achievable
privacy gains. Legally, the necessity of data needs to be argued and not its harm-
fulness to privacy. Nonetheless, to evaluate technical minimisation approaches,
some notion of privacy gain might be of interest. Benchmarking the effectiveness
of timestamp precision reduction based on known inference techniques is however
highly context specific and ignorant to future technical developments. Moreover,
timestamp-specific inference techniques are scarce (cf. Sect. 2). Instead, we argue
that a data-oriented evaluation of statistical properties like changes in distribu-
tion are more conclusive of discriminatory power and minimisation effects. For
instance, the number of distinguishable activity points over a given period ex-
presses an attacker’s ability to observe intervals between actions, which might
be used to monitor users’ throughput. Following that method, we evaluated
the effect of different precision reductions on real-world Git data. This provides
additional empirical evidence on the question whether a reduction within the
precision range of our previous demand analysis, i. e., no less than day precision,
could meaningfully improve user privacy.



14 C. Burkert et al.

0 5m 15m 30m 1h 3h 6h 12h 24h
Level of date precision reduction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sh
ar

e 
of

 d
ist

in
ct

 d
at

es

Figure 5: The share of users’ distinct Git dates decreases fast with increased
precision reduction, as evaluated on a GitHub snapshot of 360 million commits.
At a 1 hour precision level, more than half of the median user’s timestamps
are indistinguishable from their chronological predecessors, thus preventing the
inference of the temporal intervals between the respective activities.

We obtained commits from a GitHub mirror curated by the GHTorrent pro-
ject [12], which contains all public GitHub activity since 2012. Based on a snap-
shot from April 1st, 2019, we extracted all commits from users with a total of
one to ten thousand commits each, calculated over the full lifespan of the data-
set. We argue that this sample of users adequately represents frequently active
users without introducing much bias by bot-driven accounts that is expected to
increase on more active accounts, given that ten thousand commits equates to
almost four commits per day, for every day in the scope of the dataset. To non-
etheless compare the findings, we also performed the analysis on the sample of
users with between 10 and 100 thousand total commits. The expectation being,
that the more commits a user has, the higher their activity density, and hence the
higher the observed precision reduction effects. In total, we analysed 360 million
commits by 160 thousand users in the range of one to ten thousand commits, and
100 million commits by 5000 users in the range of 10 to 100 thousand commits.

For each user, we counted the number of distinct activity points in time at
various precision reduction levels from five minutes to one day. Activity points in
time are given by the commit dates and are regarded as distinct, if—after apply-
ing the precision reduction—the remaining significant date information differs.
The precision reduction is applied by rounding towards the next smaller integral
multiple of the precision. As Fig. 5 shows, a 5 minute reduction level already



Data Minimisation Potential for Timestamps in Git 15

results in only 75% distinct dates (median), and less than 50% at 1 hour. With
the sample of very active users, we saw 54% and 28% for 5 minutes and 1 hour
respectively. This indicates that a moderate precision reduction already prevents
monitoring of intervals for a significant share of activities.

Functionality loss on the other hand is relevant to evaluate the cost of
minimisation techniques. Such loss could be caused to the minimised applica-
tion itself or to attached processes and workflows. As Git itself does not pro-
grammatically use commit dates but only passes them on, there is no direct
loss of functionality or integrity. Usability should only be effected in the sense
that users get unexpected results, e. g., for filtering, if they were unaware of the
precision reduction. For instance, if a commit occurred within the last minute
but was reduced to hour precision, a filter for until 30 minutes ago would list
this command, provided no further precautions where taken. Such precautions
could be to show a notice if filters conflict with timestamp precision or to re-
ject them. The extent to which precision reduction affects Git workflows is of
course very subjective. Our empirical data on chosen display and filter preci-
sions is one indicator for reduction impact. Any reduction within the range of
those commonly chosen precisions would have limited loss for workflows based
on our analysed features. In qualitative interviews with four DevOps workers of
different seniority, their stated interest in timestamp precision varied from no
interest to precise oversight of team activities. This underlines our assumption
that workflow-related interest in precise timestamps might be more driven by
individual mannerism than procedural necessities. As user privacy should not be
left to individual discretion, tools like Git should support to enforce the precision
levels agreed upon on a per-team basis.

6.2 Representativeness and Limitations

Configurations on GitHub might not be representative for the overall user base
of Git. Only users that desire a behaviour different from the default even make
certain settings like aliases. However, a motivation to define aliases in general, is
to make frequently used commands and arguments more easily accessible. Such
settings are therefore not necessarily motivated by a wish to change default
behaviour. We argue that the subset of users that define aliases is therefore
not necessarily biased towards a date-related behaviour that differs from the
default. The analysed settings might require a more experienced Git user to
discover and use them. In that sense our analyses might be biased towards such
users. To assess whether experience influences precision demand, future research
could correlate our precision analysis with, e. g., commit counts. We argue that
experience certainly factors into the discoverability of options, but presumably
less into their configuration. Whether or not users need second-precision dates
in a log output is likely unrelated to their experience.



16 C. Burkert et al.

6.3 Timestamp Reduction Approaches and Tools

Timestamp reduction could be applied on the presentation level, but to hinder
performance monitoring and not be easily circumventable, it should be applied
during recording. Wherever precision demand is highly user-specific, the recorded
precision should be customisable. Nonetheless, a privacy-friendly default should
be chosen that reflects most needs. If Git users wish to reduce the precision with
which their actions are timestamped, they find no support to do so in Git today.
And as dates are included in the input to the hash function that determines the
commit hash, retroactive reductions interfere with hash chaining and history
keeping. As such, modification to the dates might cause diverging Git histories.
To nonetheless provide users with the option to reduce their timestamp preci-
sion, we built git-privacy [5], a tool that uses Git hooks to reduce timestamps
while avoiding conflict with previously distributed states. It uses a unit annihil-
ation approach similar to the rounding down described in Sect. 6.1, where users
can choose the most significant time unit that should remain precise. In systems
like Git with integrity-protected timestamps, at least excluding higher-precision
timestamp parts from the integrity protection would allow post-recording reduc-
tion policies to take effect without compromising the history.

7 Summary and Conclusion

Using Git config files that users published on GitHub, we have compiled and ana-
lysed a large-scale dataset of features related to users’ demand for timestamp
precision. Our analysis of the usage of date and pretty formatting as well as
date filters indicates that Git’s current behaviour of recording dates to the pre-
cise second might not be justified by user demand. In fact, we found that when
users customise output of subcommand aliases, over 40% of formats omit dates
entirely. And of the remaining formats, 80% display dates with a reduced vari-
able or static day precision. As a result, a static full second precision is not
utilised by nearly 90% of all subcommand pretty formats. Similarly, over 90%
of date formatting in subcommand aliases uses variable or day precision. We
saw a higher ratio of second precision output in pretty aliases as well as format
and date settings, which could be due to users picking default date formats in
pretty format stings, and due to a preference for ISO-style output. Our analysis
of date filters found that only 0.5% of filters would require a precision of minute
or second. In fact, 74% require a precision of day or less. All in all, we believe
that our analysis provides strong empirical evidence, that user demand for pre-
cision can be met with less than second-precise timestamps. Our evaluation of
possible privacy gains suggests that small precision reduction levels of a few
minutes already have significant effects. As Git itself does not require any date
precision, making it configurable would not only allow teams to define appro-
priate levels for their use case, but also facilitate a more GDPR-compliant use
in companies. We encourage software engineers to employ reduced and adaptive
precision timestamping for more proportionate solutions.



Data Minimisation Potential for Timestamps in Git 17

Acknowledgements. We would like to thank the anonymous reviewers and
Vaclav Matyas for their constructive and very helpful suggestions to improve
this paper. The work is supported by the German Federal Ministry of Education
and Research (BMBF) as part of the project Employee Privacy in Development
and Operations (EMPRI-DEVOPS) under grant 16KIS0922K.

References

1. Burkert, C.: .gitconfig Date Study Dataset, (2022). https://github.com/EMPRI-
DEVOPS/gitconfig-study-dataset

2. Burkert, C., and Federrath, H.: Towards Minimising Timestamp Usage In Applic-
ation Software - A Case Study of the Mattermost Application. In: DPM (2019)

3. Claes, M., Mäntylä, M.V., Kuutila, M., and Adams, B.: Do Programmers Work at
Night or During the Weekend? In. ICSE. ACM (2018)

4. Drakonakis, K., Ilia, P., Ioannidis, S., and Polakis, J.: Please Forget Where I Was
Last Summer: The Privacy Risks of Public Location (Meta)Data. In: NDSS (2019)

5. EMPRI-DEVOPS: git-privacy, https://github.com/EMPRI-DEVOPS/git-privacy
6. Eyolfson, J., Tan, L., and Lam, P.: Do Time of Day and Developer Experience

Affect Commit Bugginess? In: MSR. ACM (2011)
7. Game World Observer: Xsolla cites growth rate slowdown as reason for layoffs,

CEO’s tweet causes further controversy, (2021). https://gameworldobserver.
com/?p=10949

8. Git: Git Source Code, (2021). https://github.com/git/git
9. Git: Reference, (2022). https://git-scm.com/docs (visited on 28th Mar. 2022)

10. GitHub Docs: Best practices for integrators, (2021). https://docs.github.com/
en/rest/guides/best-practices-for-integrators (visited on 24th Sept. 2021)

11. GitHub Docs: Search API, (2021). https://docs.github.com/en/rest/reference/
search (visited on 24th Sept. 2021)

12. Gousios, G.: The GHTorrent dataset and tool suite. In. MSR ’13 (2013)
13. Mavriki, P., and Karyda, M.: Profiling with big data: Identifying privacy implica-

tions for idividuals, groups and society. In: MCIS (2018)
14. Senarath, A., and Arachchilage, N.A.G.: Understanding Software Developers’ Ap-

proach towards Implementing Data Minimization, (2018). https://arxiv.org/
abs/1808.01479

15. Slagell, A.J., Lakkaraju, K., and Luo, K.: FLAIM: A Multi-level Anonymization
Framework for Computer and Network Logs. In: LISA, pp. 63–77. USENIX (2006)

16. Traullé, B., and Dalle, J.-M.: The Evolution of Developer Work Rhythms: An
Analysis Using Signal Processing Techniques. In: Social Informatics (2018)

17. Wright, I., and Ziegler, A.: The Standard Coder: A Machine Learning Approach to
Measuring the Effort Required to Produce Source Code Change. In: RAISE (2019)

https://github.com/EMPRI-DEVOPS/gitconfig-study-dataset
https://github.com/EMPRI-DEVOPS/gitconfig-study-dataset
https://github.com/EMPRI-DEVOPS/git-privacy
https://gameworldobserver.com/?p=10949
https://gameworldobserver.com/?p=10949
https://github.com/git/git
https://git-scm.com/docs
https://docs.github.com/en/rest/guides/best-practices-for-integrators
https://docs.github.com/en/rest/guides/best-practices-for-integrators
https://docs.github.com/en/rest/reference/search
https://docs.github.com/en/rest/reference/search
https://arxiv.org/abs/1808.01479
https://arxiv.org/abs/1808.01479

	Data Minimisation Potential for Timestamps in Git: An Empirical Analysis of User Configurations

