

MARESEC 2021

IT Security Monitoring at a Port Terminal Operator

Jens Wettlaufer, Matthias Marx, Jens Lindemann, Hannes Federrath

June 14th 2021

How can we detect sophisticated attacks in the diverse threat landscape of a port terminal operator?

How can we integrate the information in the day-to-day business of nonspecialized personnel?

- Inventory and cyber risk assessment
- Kill Chain-based contextualization and choice of intrusion detection methods
- Anomaly detection use cases

 Goal-driven visualization for non-specialized personnel

Inventory and Cyber Risk Assessment*

- Identification of critical applications
 - incl. redundancy, processing of personal data, importance of IT security objectives
- Collection of risk scenarios
 - e.g. container theft, data theft, terminal sabotage

* based on ISO 27001 and BSI IT-Grundschutz

Kill Chain-based Contextualization of Damage Scenarios

logs

Intrusion Detection Methods

- Application-specific rule-based
 - e.g. >3 login failures for one username internally, log with type 'warning'
- Application-specific anomaly-based
 - e.g. communication
 with unusual IPs/subnets
- Correlation-based across applications
 - e.g. same user login failures in different systems, NIDS anomaly + honeytoken

Eric M. Hutchins, Michael J. Cloppert, and Rohan M. Amin. Intelligence-driven computer network defense informed by analysis of adversary campaigns and intrusion kill chains. Leading Issues in Information Warfare & Security Research. 2011.

Recon	Weaponiz	Deliver	Exploit	Install) C2	Actions	
Gather data and intelligence on target organization Scanning	Craft malicious payload, use exploits for vulnerabilities	Payload sent to target (phishing) Spear- phishing	Payload sent Compromise to target system (phishing) Spear- phishing		Install malware, obtain network and credentials and establish and control backdoors. Navigate internal network and setup command and control		
Firewall, ext. interface logs		Ext. infos, human	Antivirus + HIDS	Antivirus + H connected sy TOS logs, NI honeypots	TOS logs, honeytokens		
Rule		Rule, training	Rule	Rule		Rule	
			Anomaly	Anomaly		Anomaly	
Correlation &	& Anomaly						

Meaningful Anomaly Detection Use Cases in Port IT Security

- Log/Alert time-series
 - e.g. count, frequency, ...
- Profile building of user behavior
 - e.g. office personnel, crane drivers, straddle carrier drivers, ...
- Behavior of network traffic
 - e.g. TOS communication, container bridge communication, ...
- Behavior of industrial control systems
 - e.g. container bridges, autonomous cranes, AGVs, ...

[https://unsplash.com/photos/eCc7FjMoR74]

Goal-driven* Visualization for Non-specialized Personnel

- Interviews with multiple different departments
- Creation of *personas* based on similar goals

IT Admin						IT Management					
Search Filter		ter	Exp		Search		Filter		Exp		
Menu	Overview Ale		erts		Alerts in	Inter- nal Situa- tion		Ext. Situa- tion			
Details, e.g. OT			Related		Context			Related			
					Admin Views						

*Alan Cooper, Robert Reimann, David Cronin, and Christopher Noessel. About face: the essentials of interaction design. John Wiley & Sons. 2014.

- Prioritization influenced by
 - protection needs analysis
 - risk scenario assessment
 - kill chain placement
 - detection source, e.g. application logs, additional sensors
 - attack, e.g. data manipulation, scanning
 - detection mechanism,
 e.g. correlation, anomaly
 - external sources,e.g. public, private feeds
 - human interaction,
 e.g. hint, personal intuition

Summary

- Human and technical IT security awareness and contextualization
- Detection of sophisticated attacks using an appropriate combination of detection sources and mechanisms
- Goal-driven visualization embedded into the non-specialized personnel day-to-day business environment

IT Security Monitoring at a Port Terminal Operator

Jens Wettlaufer jens.wettlaufer@uni-hamburg.de

Security in Distributed Systems & IT Security and Security Management

Computer Science Department University of Hamburg Germany