Subverting Linux’ Integrity Measurement Architecture

Felix Bohling
6bohling@informatik.uni-hamburg.de
University of Hamburg, Germany

Michael Eckel
michael.eckel@sit.fraunhofer.de
Fraunhofer SIT
Darmstadt, Germany

ABSTRACT

Integrity is a key protection objective in the context of system se-
curity. This holds for both hardware and software. Since hardware
cannot be changed after its manufacturing process, the manufac-
turer must be trusted to build it properly. However, it is completely
different with software. Users of a computer system are free to run
arbitrary software on it and even modify BIOS/UEFL bootloader, or
Operating System (OS).

Ensuring that only authentic software is loaded on a machine
requires additional measures to be in place. Trusted Computing
technology can be employed to protect the integrity of system
software by leveraging a Trusted Platform Module (TPM). Measured
Boot uses the TPM to record measurements of all boot software in
a tamper-resistant manner. Remote attestation then allows a third
party to investigate these TPM-protected measurements at a later
point and verify whether only authentic software was loaded.

Measured Boot ends with loading and running the OS kernel.
The Linux Integrity Measurement Architecture (IMA) extends the
principle of Measured Boot into the OS, recording all software
executions and files read into the TPM. Hence, IMA constitutes an
essential part of the Trusted Computing Base (TCB).

In this paper, we demonstrate that the security guarantees of
IMA can be undermined by means of a malicious block device. We
validate the viability of the attack with an implementation of a
specially-crafted malicious block device in QEMU, which delivers
different data depending on whether the block has already been
accessed. We analyse and discuss how the attack affects certain use
cases of IMA and discuss potential mitigations.

CCS CONCEPTS

« Security and privacy — Operating systems security; Hardware
attacks and countermeasures; Trusted computing.

*Corresponding

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ARES 2020, August 25-28, 2020, Virtual Event, Ireland

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8833-7/20/08...$15.00
https://doi.org/10.1145/3407023.3407058

Tobias Mueller”
mueller@informatik.uni-hamburg.de
University of Hamburg, Germany

Jens Lindemann
lindemann@informatik.uni-hamburg.de
University of Hamburg, Germany

KEYWORDS

System security, integrity measurement architecture, side-channel
attack, Trusted Computing

ACM Reference Format:

Felix Bohling, Tobias Mueller, Michael Eckel, and Jens Lindemann. 2020.
Subverting Linux’ Integrity Measurement Architecture. In The 15th Interna-
tional Conference on Availability, Reliability and Security (ARES 2020), August
25-28, 2020, Virtual Event, Ireland. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3407023.3407058

1 INTRODUCTION

Software integrity is a key protection goal in computer system
security. If an attacker manages to tamper with application soft-
ware, the resulting computations cannot be trusted. This argument
extends to the OS, firmware, and finally the CPU. While protecting
the integrity of applications running on a trusted OS is feasible,
protecting firmware of a motherboard or CPU is much harder.

A lot of research has gone into the subject of ensuring the in-
tegrity of a whole computer system, e. g. by making use of a Trusted
Platform Module (TPM) for Measured Boot and Remote Attesta-
tion [24, 42, 51]. With Measured Boot the system measures all boot
components, e.g. the BIOS, the bootloader and the OS kernel. As
the measurements are anchored in the TPM, a third party can verify
them against expected good measurements (Remote Attestation).
The result of this verification can then be used for security relevant
decisions, e. g. whether a passphrase for disk encryption can be
handed out or whether a machine shall be allowed to access the
network in a Network Admission Control (NAC) system [26].

Secure Boot, in contrast to Measured Boot, verifies digital signa-
tures over software components in place, before passing control to
them. In case a signature is not valid, the system stops booting.

IMA is part of the Linux Security Modules (LSM) subsystem and
extends the principles of Measured Boot and Secure Boot into the
Linux OS. For this purpose IMA measures executables before they
are loaded into memory for execution. IMA can be configured to
also measure other files upon access.

It is worth noting that IMA does not prevent all possible ways
of introducing malicious code into the Linux OS on its own. For
example, extended Berkeley Packet Filter (eBPF) program loaded
into the kernel from user-space as well as simple file-like objects
such as stdin are known to be so called “measurement gaps”.

In this paper we present our findings of an inherent Time of
Check, Time of Use (TOCTOU) vulnerability in Linux’ IMA [11].
Instead of just finding another measurement gap, our attack exploits

https://doi.org/10.1145/3407023.3407058
https://doi.org/10.1145/3407023.3407058

ARES 2020, August 25-28, 2020, Virtual Event, Ireland

a systemic weakness of IMA. With our attack an attacker is able to
undermine the integrity of a target system by having a malicious
file executed, despite the IMA measuring the correct value. We
demonstrate the feasibility of the attack and evaluate chances of
successfully launching it.

The problem exists because IMA requires files and executables
to be read and hashed as a whole, before they are executed or read.
However, if the OS cannot cache the entire file read by IMA, parts
of it are read off the disk again by the OS loader; this time without
involving IMA. Similarly, IMA only re-hashes a file if it thinks it has
changed. In case a program is executed multiple times consecutively
and is not present in the page cache, it will be read off the disk for
execution without being hashed again by IMA.

In this paper, we exploit this systemic weakness to make the OS,
and in fact any interested third party, believe that the machine has
been executing benign code, while we actually caused the machine
to execute our malicious code. Consequences and their severity
vary with the way IMA is used. However, it is conceivable that
certain industries, especially in the critical infrastructure domain,
rely on IMA to assert the integrity of their systems [20, 39, 46, 52].

With our attack, a motivated attacker is able to stealthily compro-
mise computing systems. In the domain of critical infrastructures,
misbehaviour can have severe impact on the environment, infras-
tructure, or even humans. Considering a nuclear power plant which
encounters undetected serious malfunction caused by malicious
software, consequences can be disastrous.

With this paper, we make the following contributions:

o We review mechanisms and protocols to assert the integrity
of a computer system,

e we analyse an inherent weakness in the implementation of
Linux’ IMA, and how it affects certain use cases of IMA,

e we evaluate the attack surface as well as performance and
feasibility measurements, and

o discuss potential mitigations for the problem.

2 BACKGROUND

A trusted system boot process is a precondition for a trusted op-
erating system [7]. The Trusted Computing Group distinguishes
between two methods by which a trusted system can be booted [47],
i.e. Measured Boot and Secure Boot, both of which are described
in more detail in the following. Further, we introduce remote attes-
tation and IMA.

2.1 Measured Boot

Measured Boot, also referred to as Trusted Boot, is the process in
which a system measures all boot components consecutively after
the system is powered on [29]. Boot components are, e. g. BIOS,
bootloader, or the OS kernel. Measurements are recorded in one or
more event logs and represent hashes of software binaries and files,
generated using a cryptographic hash function, such as SHA256.
Along with the hash of a component, an identifier is recorded in
the event log, e. g. "UEFI", "Option ROM", or "Bootloader", which
enables the log to be auditable at a later point.

The measurement process is hardened by using a TPM to anchor
event log entries, making them tamper-resistant against unintended

Felix Bohling, Tobias Mueller, Michael Eckel, and Jens Lindemann

manipulation. Anchoring, in this context, means that a measure-
ment hash is extended to a protected location called Platform Con-
figuration Register (PCR) inside the TPM. A PCR realises a folding
hash function internally and allows only to extend it, i. e. it is not
possible to delete the PCR or set it to an arbitrary value. As a result,
an attacker cannot tamper with the event log undetected in order
to cover traces of malicious actions.

The measurement process is implemented as follows: (1) execute
main logic of component, (2) measure next component in the boot
chain, (3) append measurement to the event log, (4) anchor log
entry in the TPM, (5) activate next component. This is to ensure
a component becomes active only after it has been measured and
recorded in the TPM-protected event log.

There must be a very first component in the system which be-
comes active immediately after the system is powered on. This
component is called Root of Trust for Measurement (RTM), and
must be trusted implicitly. The RTM typically is immutable and
often implemented in hardware.

2.2 Secure Boot

Secure Boot, also referred to as Verified Boot [3], was first described
by Tygar and Yee [49] and is similar to Measured Boot. However, in-
stead of only recording measurements of the next component in the
boot chain, it verifies the hash in place by comparing it against an
expected one, a reference measurement. Reference measurements
can be embedded as digital signatures inside the boot component
binary itself, and can be verified, e. g. using a key in the TPM. In
case the expected hash does not match the current, the boot process
is aborted, resulting in a system that is unable to boot [43].

Early implementations of Secure Boot, which also support Au-
thenticated Boot, used specialised hardware and co-processors [19,
49]. Arbaugh et al. first practically applied Secure Boot to a PC
platform with minor modifications to the BIOS and by adding a
PROM chip. Secure Boot is supported on PCs since UEFI 2.3.1 [37].
As of today, different implementations of Secure Boot exist.

Secure Boot constructs a chain of integrity checks from power
on, over the boot process, until control is finally transferred to the
operating system [7]. According to Sailer et al. [43], Secure Boot
is not practical for systems which from time to time need remote
updates of security policies, without making the system vulnerable
to denial of service attacks. Therefore, instead of simply aborting
the boot process, Measured Boot [8] can be used to measure the
boot process. Secure Boot and Measured Boot can be combined and
operated in parallel.

2.3 Remote Attestation

Remote attestation is a process in which a system, the attestor, re-
ports cryptographically signed evidence about all executed software
and files read. Produced evidence is reported to an investigating
system, the verifier, which in turn verifies the evidence. The result
of this verification is a cryptographically signed claim about the
integrity of the system.

Remote attestation requires a trustworthy Measured Boot pro-
cess to be in place on the attested system. This is typically ensured
by a system incorporating a RTM and a TPM in its hardware design,
as well as TPM-aware boot components.

Subverting Linux’ Integrity Measurement Architecture

10 1d8d[..] ima-ng shal:0000[..] boot_aggregate

10 5cfal..] ima-ng shal:a947[..] /init

10 290f[..] ima-ng shal:5955[..] /bin/sh

10 @d41[..] ima-ng shal:91bb[..] /etc/1ld.so.cache

10 a5c1[..] ima-ng shal:f598[..] /conf/arch.conf

10 2bf3[..] ima-ng shal:c98al..] /conf/initramfs.conf
10 e8d@[..] ima-ng shal:9b32[..] /scripts/functions
Figure 1: (Shortened) IMA Stored Measurement

Log (SML) of a booted Linux system, obtained via
/sys/kernel/security/ima/ascii_runtime_measurements
and using IMA template ima-ng

2.4 Integrity Measurement Architecture (IMA)

IMA extends the principles of Measured Boot and Secure Boot to
the Linux OS, by applying it to applications and accessed files [43].
IMA has been part of the Linux Integrity Subsystem since 2009
(kernel 2.6.30) [55, 57] and enables protection of system integrity
by collecting and storing measurements, and appraising them locally.

Further, IMA enables remote attestation and protecting measure-
ments stored in extended attributes of files [42, 43, 55, 56]. For
extending Secure Boot and Measured Boot to the operating system
and its applications, IMA provides two mechanisms called Appraisal
and Measurement.

2.4.1 IMA Appraisal extends the principle of Secure Boot into the
OS and its applications. Known good hash values of each file are put
into the extended file attributes. IMA uses these values to compare
them against actual measurements of a file. In case of a measure-
ment mismatch, IMA denies access to the file. Instead of only storing
hash values in the extended file attributes, digital signatures can be
used.

IMA appraisal can be run in four different modes [21, 56]: (1) fix
collects and attaches the measurements as good hash values to the
file’s extended attributes., (2) log logs mismatches between the
measured hash and the hash in the file’s extended attributes, (3) en-
force denies access in case of a mismatch, and (4) of f disengages
IMA appraisal.

24.2 IMA Measurement extends Measured Boot into the OS. It
enables for Remote Attestation, where a third party challenges the
system in order to verify its integrity [43]. For that purpose IMA
maintains an ordered list of hash values in the kernel, the Stored
Measurement Log (SML), for all files measured since the OS took
over control.

Although IMA can be used without a TPM, it is usually used
in conjunction with a TPM to provide a much stronger, hardware-
rooted chain of trust. The SML can then be used in a remote attes-
tation process in order to provide an investigating remote party
with evidence of all software executions. The remote party can
then verify the SML against a database with known good reference
measurements, and check for deviations from the intended integrity
state [43].

IMA provides the SML in both ASCII and binary representa-
tionsin /sys/kernel/security/ima/: ascii_runtime_measure-
ments and binary_runtime_measurements [56]. The format of

ARES 2020, August 25-28, 2020, Virtual Event, Ireland

the SML is defined by an IMA template (cf. Fig. 1). With the stan-
dard template ima-ng, the columns are, from left to right [21, 56]:
(1) TPM PCR, (2) template hash, which is a hash computed over
the file’s path name, content hash, and other components which
are defined by the template, (3) name of the used IMA template,
(4) hash of the file content, and (5) file.

2.4.3 IMA Policies define which files to measure. IMA has three
built-in policies which are passed as kernel boot arguments: (1) tcb
measures kernel modules, executed software, files which are loaded
into memory for execution with mmap, and files opened for reading
by the root user. (2) appraise_tch appraises in place, instead of only
measures, the same components as the tcb policy. It denies access if
files do not match their known good hash. (3) secure_boot appraises
only the kernel, its modules, and the IMA policies.

Other concepts, such as “Trusted Cloud” [9, 10], TPM-based
network endpoint assessment [44], Trusted Software Defined Net-
works [25], and integrity verification of Docker containers [17],
build on IMA for detecting or protecting against manipulation of
systems. IMA has also been applied to the critical infrastructure
domain, e. g. for protecting sensors, actuators, and other controller
and monitoring class devices [15, 20, 39, 52].

3 SUBVERTING IMA

In this section we describe our attack that overcomes IMA with a
malicious block device. We first explain the underlying threat model
which will be considered throughout the rest of the paper. Subse-
quently, we present our findings regarding the inherent weaknesses
of Linux’ current implementation of IMA.

3.1 Threat Model

For the purpose of our attack, we assume that an attacker has
the ability to either insert a malicious block device into an IMA-
protected system or modify the block device’s firmware. Those
manipulations could be performed at the manufacturing site, e. g.
the manufacturer places an additional chip or a modified version
of the chip for the customer’s device. We note that such attacks
have been documented [2, 13, 41]. Note that it is not necessary for
an attacker to have full physical access to the target system - it is
sufficient for them to be able to manipulate the block device itself.

The supply chain of a device constitutes another prominent tar-
get for attack. On its way from the manufacturer to the customer,
the device can be intercepted and compromised hardware or soft-
ware be implanted. This attack is known to be executed by the NSA
through their “Tailored Access Operations” (TAO) [6, 23, 54].

Finally, the attack could be launched while the device is being
maintained by a regular service operator, e. g. by replacing either
the hard disk or its firmware with a malicious copy. Such a service
operator could either be coerced into misbehaving or be infected
with a malware which replaces other device’s firmware, e.g. through
BadUSB [35], without the service operator even noticing.

We assume that the attacker intends to modify an arbitrary file
to either change a data value or manipulate the control flow of a
program executed by the IMA-protected OS. In order to make the
attack more severe, we concentrate on executable files and note
that the attacker may either target the text section of the executable
directly to manipulate the program code contained therein, or the

ARES 2020, August 25-28, 2020, Virtual Event, Ireland

data section to manipulate the data processed by the program. We
further assume that the program is either larger than the machine’s
memory or that the system is performing other tasks which causes
the system to thrash.

The benign version of the file is assumed to have been obtained
and stored by the victim before. As the manipulated version of the
file has a different hash value than the benign version, the attacker
needs to be able to expose the changed file in a way that IMA will
not notice the changed hash value. Thus, even though appraisal
is activated, the manipulated version of the file will be executed.
For remote attestation, the hash value of the original version of the
file is stored in the SML, while the manipulated version was in fact
executed.

To this end, we consider two scenarios, in which the malicious
block device provides the benign executable for the first read oper-
ation and the manipulated executable thereafter:

(1) The program is executed only once by the victim, e.g. during
the boot process. In this scenario, it is conceivable that the
program may finish its execution within a short period of
time or that it may be executed continuously for a long time,
e.g. as a daemon.

(2) The program is executed multiple times. Between the subse-
quent executions, some time passes and the machine is used
for other purposes which cause the system to thrash.

We do not require our attacker to be able to change the boot
parameters, e. g. manipulate the way the system boots. Further, we
do not require the attacker to manipulate the TPM or any other
hardware other than the hard disk or rather its firmware.

3.2 Structural Problems

A key insight into the vulnerability of IMA is that the check it
performs is susceptible to a TOCTOU attack. Before Linux executes
a file, it needs to compute its hash. If the file is large enough to
not fit into the OS buffer cache, e. g. bigger than the machine’s
RAM, then the file will be read twice: First the file is read by IMA
to compute its hash value. Then the file is read again for execution.
For that second read, the file is not measured again by IMA. Hence,
IMA will not notice if the block device provides a modified version
of the file on the second read (cf. Fig. 2).

If the executable is not bigger than the caches, it will be in the
page cache after IMA measured it. Hence, Linux does not issue a
read request to the underlying block device, and thus, the block
device sees only one read request from the OS rather than two.
Hence, if the block device wanted to attack the host it would have
to render the malicious executable on the first read. That, however,
would be detected by IMA as it sees a change in the hash value.
For optimisation reasons, however, IMA measures a file only if it
thinks that it has not been hashed yet or that it has changed since
the last read. This leads to the behaviour that if an executable has
been evicted from the cache before it is executed again, IMA will
not re-measure it, but assume the already measured value to be
correct. Under these circumstances, the malicious block device can
thus provide a modified version of the executable on subsequent
reads.

We present an implementation of the attack in Sect. 3.3 and
evaluate the conditions that make the attack possible in Sect. 4.

Felix Bohling, Tobias Mueller, Michael Eckel, and Jens Lindemann

Userspace Kernelspace Hardware

| User | | Kernel | | IMA |

| Block Device |

execute(file) —1 trigger_measurement(file, —1 read_blocks(file —1

e |

measure(file)

read_blocks(file)

malicious_file H

execute(malicious_file)

Figure 2: Exploiting the inherent TOCTOU bug in Linux’
IMA implementation

3.3 Implementation

To simulate our attack, we need a malicious block device that can
be used to trick IMA. To this end we modified the implementation
of the virtual block devices in the QEMU hypervisor. Our imple-
mentation is based on version 4.1.0 of QEMU. We modified the
(virtual) block device to (1) detect read access to security related
information on the file-backed storage device, (2) return unmodified
security-relevant information on the first read, and finally (3) return
modified security-relevant information on subsequent reads.

The target of our modification was the raw_co_preadv function
of QEMU. This function is a thin wrapper around the generic raw_-
co_prw function which implements logic for reading from a file-
backed block device. Our intention is to intercept all read calls to
the block device, and deliver the benign version of the file on the
first read and a malicious version of the file, where a part of the file
is manipulated.

Figure 3 shows the patched function used for the simulated attack.
Originally, the function returns with the result of line 2, i.e. it is just
thinly wrapping the other function. Thus, all further lines show our
modifications. In line 4 the offset of the attacked file on the block
device is defined. Line 5 defines where the part of the file starts that
is manipulated during the attack. Line 6 defines where the part to
be manipulated ends. The offsets in lines 4, 5 and 6 must be adjusted
according to the target file and its position on the file system. By
adding the previously mentioned offsets, the actual beginning and
end of the manipulated area on the device is computed in lines 7
and 8. Line 9 defines a counter, that is used to count the number of
reads that have happened. The if statement in lines 11 to 13 check
whether the current read happens on our target block device and if
the read is in the area that is to be attacked. If the read affects the
part of the file that is to be attacked and the information has been
read at least once before, the benign information will be replaced
with the malicious information in lines 15 to 28. For this a buffer is
created and filled with the value @xFF and copied into the io vector
that is used by the hypervisor to read from the backing file of the
simulated block device in lines 21 to 24. Before that the size and
placement of the buffer within the vector is calculated in lines 15
to 19. When finally the end of the area to be manipulated has been
read, the read counter in line 27 is incremented.

Subverting Linux’ Integrity Measurement Architecture

static int coroutine_fn
— raw_co_preadv(BlockDriverState *bs, uint64_t
— offset, uint64_t bytes, QEMUIOVector *qgiov, int
- flags) {
int retval = raw_co_prw(bs, offset, bytes, giov,
< QEMU_AIO_READ);

const uint64_t file_abs_pos =
const uint64_t data_rel_bgn =
const uint64_t data_rel_end =
< 0x00100000;

const uint64_t data_abs_bgn =
— data_rel_bgn;

const uint64_t data_abs_end =
— data_rel_end;

static int dev_reads = 0;

0x001e2000;
0x00001020;
data_rel_bgn +

file_abs_pos +

file_abs_pos +

if (offset <= data_abs_end

&& offset + bytes > data_abs_bgn
&& strstr(bs->filename, "fat") != NULL) {

if (dev_reads > 0) {
int cpy_bgn = data_abs_bgn - offset;
if (cpy_bgn < 0) { cpy_bgn = 0; }
int cpy_end = data_abs_end - offset;

if (cpy_end > bytes) { cpy_end = bytes; }
ptrdiff_t cpy_bytes = cpy_end - cpy_bgn;
char evil_buf[cpy_bytes];
for (int i = 0; i < cpy_bytes; i++) {
evil_buf[i] = OxFF;

}
gemu_iovec_from_buf(giov, cpy_bgn,
— evil_buf, cpy_bytes);

3

if (offset + bytes > data_abs_end) {
dev_reads += 1;

return retval;

Figure 3: Patch for the QEMU hypervisor to return malicious
data on subsequent reads.

We make our modifications to QEMU and all auxiliary scripts
available under: https://github.com/muelli/subverting-ima.

4 EVALUATION

This section describes under which conditions our attack works.

In order to see whether our attack works we have created a
scenario that resembles an embedded controller in the critical in-
frastructure domain. That is, we have a (virtual) machine that boots
into Linux with IMA protection, i.e. the IMA policy set to ap-
praise_tcb (cf. Sect. 2.4.3). The operating system then starts an
executable during boot. This could be a program for controlling
some industrial hardware that the system is connected to.

ARES 2020, August 25-28, 2020, Virtual Event, Ireland

static char hello[] = "Hello, World!";
static int foo[1024 * 1024 = SIZE_IN_MB] = {0};
static char bye[] = "Good bye!";

int main() {
printf("%s\n", hello);

// Here we wait for the thrashing
system("systemctl start stress-ng.service");

for (int i = 0; i < sizeof (foo); i++) {
if (fool[i]l != 0) {
printf("%i is wrong: %i\n", i, foo[il);
}
}
printf("%s\n", bye);
return 0;

Figure 4: Crafted program in our critical infrastructure sce-
nario that an attack is trying to tamper with (simplified).

We assume that the operator of the machine has set up Linux
such that it makes use of IMA in order to protect against integrity
compromising attacks. That means, in particular, that executable
files have their hashes added as extended attributes and that Linux
is booted in enforcement mode. Additionally, the hashes need to
be signed and the key bound to the TPM so that it can neither be
extracted nor replaced easily.

Our attacker attempts to make the operating system execute
a file that has been tampered with. Our attacker has successfully
launched their attack if neither the operating system nor an attestor
notice any difference in the measured IMA values.

For evaluation, we set up a system that resembles this scenario.
This setup consists of the already described QEMU hypervisor on
x86-64 running a virtual machine of the same architecture with 512
MiB of RAM. On the host, we use an Ubuntu 18.04 with its default
Linux 4.15 kernel. In the guest, we run an Ubuntu 20.04 with its
default Linux 5.4 kernel. In line with our scenario, IMA is active.
The main Linux system is booted from a normal, unmanipulated
QEMU block device. Another block device is attached to the VM,
which uses our modified, malicious version of the QEMU virtual
block device (cf. Sect. 3.3). This block device is then used to launch
an executable during boot, so that it can be used as the target
of our attack. Instead of a complex program, we use a relatively
simple one which iterates over an array and checks its contents,
so that we can verify whether a manipulation took place (cf. a
simplified version in Fig. 4). The size of the foo array in this code
can be changed to produce executables of different sizes. The array
can be placed either into the data or the text section at compile
time. GCC places the array in the text section if it is marked with
__attribute__((section(".text#"))). This allows us to test
whether we can modify the respective section using the resulting
executables.

When this program is executed without any attack taking place it
is executed and running as expected. If the executable is replaced by

https://github.com/muelli/subverting-ima

ARES 2020, August 25-28, 2020, Virtual Event, Ireland

a manipulated version on a normal block device without adjusting
the signed hash value, IMA will detect the manipulation and refuse
execution of the executable, as the system log shows:

audit: type=1800 audit(...): . op=appraise_data
— cause=invalid-hash comm=(check) name=check
— dev=vdal

We first tested whether we could attack a relatively small version
of our test program in our first scenario, as described in Sect. 3.1. We
tuned the array size so that the executables containing it in either
the text or data section were 1 MiB in size, each. After starting,
the program immediately started checking the array. When these
executables were started from the malicious block device, IMA did
not notice any attack taking place. Both printed the same output
as they would have printed when executed from a benign block
device, i. e. we were not successful in manipulating the executable.

We then used a larger version of our test program. We produced
an executable of 768 MiB in size, which exceeds the amount of
available memory (512 MiB). Interestingly, we could make Linux ex-
ecute ELF files with a text section bigger than the available memory,
but not files with a data section bigger than the available memory.
With a data section too big to fit into memory, Linux fails execution
with a segmentation fault. With a big text section, IMA did not
notice any attack taking place and allowed the executable to be run.
However, the output did not match that of the program’s benign
version. When the array was placed in the text section, 824 123 392
of its 824 180 736 bytes were successfully manipulated by the at-
tack, which corresponds to 201 202 out of 201 216 memory pages.
In other words, 14 pages were held in memory while the rest was
evicted. By running the test multiple times, we could observe that
the first 13 pages as well as the last page which contained the array
were always retained while the corresponding areas of the other
pages on the block device were read twice.

While this attack allows us to modify nearly all pages of the text
section of the executable section, it requires the benign executable
to be larger than the available memory. It is questionable whether
such a large executable which overloads the system’s main memory,
would actually be used by the victim.

Therefore, we modified our scenario to determine whether we
can perform a similar attack on a smaller executable. In the modified
scenario, we cannot rely on the executable being read once by IMA
and then immediately again for its execution. However, parts of
the executable may have been removed from memory over time if
the memory is needed for other purposes. In case of a file-backed
mapping whose contents have not been modified, the corresponding
memory pages will not be written out to swap space, but rather be
loaded again from the original file.

To evaluate whether an attack works in the modified scenario, we
introduced a wait time into our program: After starting, the program
now sleeps for two minutes. Only after this period, the program
checks whether the array has been successfully manipulated. We
varied the size of the executable to evaluate the impact of the size on
the attackability. The file sizes tested were (in MiB): 1, 2, 4, 8, 16, 32,
64, 128, 256, and 384. For each file size, both executables containing
the array within the text section as well as one containing it in the
data section was compiled.

Felix Bohling, Tobias Mueller, Michael Eckel, and Jens Lindemann

Successfully manipulated bytes for 128 MiB stress-ng size

100 T T T T T T T T T
text section
¥ 80 | —— data section b
©
> 60 | b
2
g 40 .
€
X 20 4
O 1 1 1 —— 1 L 1 1 1

1 2 4 8 16 32 64 128 192 256 320 384

executable size

Figure 5: Diagram showing the percentage of successfully
manipulated bytes for different executable sizes, and a fixed
allocation size of the stress-ng benchmark of 128 MiB.

While the program was sleeping, we executed a stress-ng bench-
mark. stress-ng was configured to allocate 1 (32, 64, 128, 192, 256,
320, and 384) MiB of memory, by growing the heap in 1 MiB in-
crements. In particular, the command we executed was stress-ng
--bigheap 1 --bigheap-ops memsize --bigheap-growth 1M
--timeout 30s with stress-ng version 0.11.07. By varying the size
of the memory allocation, we simulated different intensities of
memory pressure exerted by other processes running on the same
system as our target executable.

For each of the resulting 160 combinations of array placement,
file size, and stress-ng allocation size, the test was executed 20
times. Table 1 shows the average percentage of memory successfully
manipulated in the array for each configuration.

The results indicate that an increase in the size of the executable
leads to a larger part of the executable’s image in memory being
manipulated by our attack. For instance, when stress-ng was con-
figured to use 128 MiB of memory, no page of the text section nor
of the data section of a small executable of 1 MiB could be manipu-
lated. For a large executable of 256 MiB, 48.01 % of the text section
and 46.15 % of the data section could be manipulated (cf. Fig. 5).

A similar trend can be observed for the stress-ng memory allo-
cation size: The more memory stress-ng was configured to use, the
larger was the proportion of the executable’s text and data sections
successfully manipulated. For example, 0 % of the text section and
0% of the data section from a 64 MiB executable could be manip-
ulated when stress-ng was configured to use 1 MiB of memory.
When we increased the memory usage of stress-ng to 256 MiB,
63.84 % of the text section and 64.05 % of the data section could be
manipulated (cf. Fig. 6).

Finally, we evaluated whether it is also possible to attack a pro-
gram that is executed multiple times instead of being executed
continuously for a long time, as in our second scenario (cf. Sect. 3.1).
For this experiment, we used small version of our test program,
i.e. the executable was 1 MiB in size and thus significantly smaller
than the amount of available memory. The executable did not sleep
before checking the array. When the executable was first started,
results were in line with our first experiment: IMA did not notice
an attack taking place and thus allowed the program to be executed,
while the program’s output matched that of the benign version.

Subverting Linux’ Integrity Measurement Architecture

ARES 2020, August 25-28, 2020, Virtual Event, Ireland

Size Sec- stress-ng Allocation Size (MiB)

(MiB) tion 1 32 64 192 256 320 384
. fext 0.00(£0.00) 000(£000) 000(000) 0.00(£0.00) 0.00(000) 1662(x587) 7856 (+3.89) 100.00 (x 0.00)
data 0.00 (£0.00) 0.00(+0.00) 0.00(+0.00) 000 (£000) 070 (x492) 1454 (441) 79.18 (+7.45 99.61 (+ 0.00)
, fext 0.00(£000) 000(x000) 000(000) 0.00(+000) 0.00(£000) 25.94(x9.84) 8653 (+387) 100.00 (& 0.00)
data 0.00(+0.00) 0.00(£0.00) 0.00(£0.00) 000 (+0.00) 0.00(+000) 2141 (£4.76) 86.89 (x2.86) 99.80 (£ 0.00)
, fext 000(£000) 000(x000) 000(x000) 024(+173) 0.00(£0.00) 3129 (£530) 8973 (x202) 100.00 (& 0.00)
data 0.00(+0.00) 0.00(+0.00) 0.00(+0.00) 000 (+0.00) 0.00(x000) 29.72(+8.70) 90.44 (+1.96) 99.90 (0.00)
g fext 000(x000) 000(000) 0.00(x000) 0.00(000) 000(x000) 3298 (447) 9347 (x087) 100.00 (x 0.00)
data 0.00 (+0.00) 0.00(+0.00) 0.00(+0.00) 000 (£000) 0.00(<000) 3533 (500 93.27(+1.01) 99.95 (+ 0.00)
Lo et 000(£000) 0.00(x000) 0.00(+0.00) 0.00(+0.00) 058(£407) 3160(+117) 9157 (+043) 10000 (0.00)
data 0.00 (0.00) 0.00(+0.00) 0.00(+000) 079 (£560) 0.0 (< 0.00) 43.40 (+7.76) 95.02 (+ 0.62) 99.98 (< 0.00)
4p fext 0.00(£0.00) 000(x000) 000(000) 0.00(+000) 0.00(£000) 5201(£567) 9466 (+036) 100.00 (& 0.00)
data 0.00 (0.00) 0.00(+0.00) 0.00(+000) 0.00(£000) 291 (14.40) 5198 (+ 1.81) 95.43 (+0.67) 99.99 (+ 0.00)
oq feXt 000(£000) 0.00(0.00) 0.00(£000) 057(£401) 973(£237) 6384(x104) 97.15(x050) 100.00 (+ 0.00)
data 0.00(+0.00) 0.00(£0.00) 0.00(£0.00) 0.00(+0.00) 10.38 (+2.56) 64.05(x1.34) 96.21 (+0.49) 99.99 (£ 0.00)
g EXE 000(£000) 000 (£000) 222 (+10.98) 0.96(x032) 4360 (+078) 7550 (0.78) 9727 (+0.44) 100.00 (x 0.00)
data 0.00 (£0.00) 0.00(+0.00) 0.00(+000) 546 (£ 1.03) 43.29 (£ 0.54) 7534 (< 0.69) 97.09 (+0.25) 100.00 (% 0.00)
ysg feXt 1188 (£1298) 1391(+079) 2491(x034) 4801(+752) 6580 (x043) 8424(229) 9876 (+028) 10000 (0.00)
data 12.16 (+ 1.51) 1639 (+ 12.10) 24.87 (+ 0.36) 46.15 (+ 0.36) 66.90 (+ 4.78) 8451 (« 0.28) 98.78 (+ 0.25) 100.00 (% 0.00)
sgq O 9999(£000) 9999 (+0.00) 99.99 (£ 0.00) 99.99 (x0.00) 99.99 (0.00) 99.99 (+0.00) 99.99 (+0.00) ~99.99 (x 0.00)
data 99.99 (+0.00) 99.99 (+ 0.00) 99.99 (+ 0.00) 99.99 (+ 0.00) 99.99 (0.00) 99.99 (« 0.00) 99.99 (+ 0.00) 99.99 (+ 0.00)

Table 1: Average percentage and standard deviation of 50 runs of text and data section successfully manipulated by our attack,
depending on the size of the executable and the allocation size of the stress-ng benchmark.

Successfully manipulated bytes of a 64 MiB executable

100 T T T T T T T T T
text section
2 80 — data section .
©
> 60 A
k=3
g 40 | -
€
R 20 .
O 1 1 1 1 1 1 1

1 2 4 8 16 32 64 128 192 256 320 384

stress-ng allocation size

Figure 6: Diagram showing the percentage of successfully
manipulated bytes for a 64 MiB executable, in relation to the
allocation size of the stress-ng benchmark.

As the program is now no longer being executed, there is no
need for the OS to keep it in memory, except for caching purposes.
Contents of the cache will be overwritten by the OS if memory is
needed by applications or if file I/O leads to other data being cached.
Eventually, the executable will therefore disappear from memory
over time. To simulate this, we manually evicted the page cache on
our system (echo 1 > /proc/sys/vm/drop_caches).

We then started the executable again. IMA did not detect any
changes in the file and allowed the program to be executed. How-
ever, the file was read from our malicious block device again and

now produced a different output than the benign version. The full
array could be manipulated successfully both when it was placed in
the text section as well as when it was placed in the data section.

5 RELATED WORK

This section briefly presents mechanisms to protect the integrity of
systems. Some of them are employed by different operating systems,
some are subject to research.

Apple developed a technology called System Integrity Protection
(SIP) which prevents modification of system files, even as root user.
Unlike IMA, however, SIP lacks the capability of convincing a third
party that the system has been booted into an acceptable state [4].
Additionally, macOS defaults to use Secure Boot (cf. Sect. 2) on
certain devices [5].

Windows has two mechanisms to protect the integrity of the
system. One is called “Code Integrity” and ensures that only digi-
tally signed files are loaded into memory [34]. The other is called

“Memory Integrity” and makes use of virtualisation technologies

in order to isolate kernel-mode processes at run-time [31]. Both
mechanisms, however, lack the ability to convince a verifier that
the machine has been booted cleanly.

Chrome OS, based on Linux, makes use of dm-verity [16] which
is an integrity mechanism for read-only data that works at block
level using the Linux Device Mapper. Since checking an entire block
device is susceptible to taking a very long time, each block is hashed
separately and hashes are stored in a Merkle hash tree [27]. With

ARES 2020, August 25-28, 2020, Virtual Event, Ireland

this design each block can be validated with reading a maximum
of log(n) other blocks.

Android uses fs-verity to ensure the integrity of files [28]. It is
similar to dm-verity [27], but works on filesystem level, rather than
block device level. A fs-verity enabled filesystem stores a hash-tree
as additional data for a file, and evaluates it when the file or parts of
it are read. “[...] fs-verity also re-verifies data each time it’s paged
in. This ensures that malicious disk firmware can’t undetectably
change the contents of the file at runtime” [28]. dm-verity and fs-
verity use a block size which is equal to the system page size, i.e.
usually 4096 [27, 28]. Measuring and verifying blocks upon every
access represents the main difference to IMA.

Swierczynski et al. implement a real-world FPGA hardware Tro-
jan insertion on a FIPS-140-2 level 2 certified USB flash drive from
Kingston [45]. This shows that hardware attacks on a block level
are a real threat, and that even on cryptographic hardware.

With DRIVE, Rein describes and implements a concept to detect
runtime attacks on loaded software [40]. DRIVE continuously mon-
itors the actual memory image of a binary, and compares it with
the loaded binary code. All measurements are anchored in the TPM
and, thus, are integrity-protected by cryptographic hardware. The
expected memory image is predicted by using the binary file, the
loading mechanism, and allocated memory addresses. This is why
binary files themselves are used as references. During verification,
loading of the binary is emulated using the allocated memory ad-
dresses. As a result, an expected in-memory reference measurement
is produced and compared to the actual in-memory measurement.
DRIVE reduces the attack surface for sophisticated adversaries who
target volatile memory. It complements the load-time integrity con-
cept of IMA. However, DRIVE is complex and hardware-specific,
and no open-source implementations exist.

Another approach which targets runtime attack detection and
prevention, is Control-Flow Integrity (CFI) [1]. It assumes that
many current software attacks leverage exploits to subvert machine
code execution. CFI detects runtime attacks by monitoring the
branching behaviour of executed software, and its guarantees can
be established formally. There is even hardware support for CFI,
including shadow call stacks and access control for memory regions
[18]. Moreover, CFI is available for low-end MCUs [36].

Especially for lower-end embedded devices, an approach ex-
ists, which uses hardware-specific features to assess how likely
firmware is benign or malicious [50]. Similarly, it has been reported
that power-related measurements are able to reveal firmware with
unwanted modifications [12, 33]. The notion of pre-boot time attes-
tation of the whole system, including “the contents of all processor
and I/O registers and primary memories of a chipset and peripheral
device controllers” [22], could work to detect modified firmware.
Given the capacity of contemporary drives, the approach can only
help to defend in certain environments with small storage.

6 DISCUSSION

In this section we discuss the scope of our attack as well as potential
mitigations and their viability.

Felix Bohling, Tobias Mueller, Michael Eckel, and Jens Lindemann

6.1 Attack Scope

We note that our subversion exploits a condition that is out of
scope for the original IMA description [43]. We argue, however,
that maliciously acting block devices are a real threat as it is known
that hardware or its firmware is being manipulated while it is in
transit [6, 23]. Firmware of block devices can be re-programmed
[14, 53] through standard protocols [35]. Also, attacks on firmware
of devices belonging to critical infrastructure have been subject to
research [30].

The precondition for our attack is that an executable either is
too large to fit into the caches of the machine, or that it gets evicted
from the caches and must be re-read off the disk. We acknowledge
that this scenario is not universally relevant, but we argue that it
is common for embedded controllers to be resource-constrained
and that it is hence more likely for those types of hardware to be
susceptible to our attack.

While our attack works reliably in our test-bed, we have noticed
that, sometimes, the target area with security sensitive information
is read while the partition is mounted. Hence, we noticed three
reads until our binary was executed. We hypothesise that Linux
enumerates directories and that it helps to have security sensitive
information not in the front of the partition.

6.2 Mitigations

The way how IMA is currently implemented in the Linux kernel
is not sufficient. Just measuring a file once cannot work reliably if
attacks on block device firmware are considered, given that a block
device unilaterally decides to change a file. Hence, mechanisms as
found in dm-verity and fs-verity should be evaluated as to whether
they can alleviate the problem. In fact, making IMA aware of fs-
verity mechanisms and allow pages to be verified as they are used
has been discussed in the community.

We did not investigate Apple’s Secure Boot as the public doc-
umentation is sparse. If Apple includes the firmware of the hard
disk in the Secure Boot process, then they should effectively thwart
our attack. Further, we did not look into Windows TPM Base Ser-
vices (TBS) and Windows System Monitor (Sysmon).

An efficient countermeasure for our attack would be authenti-
cated encryption of data at rest, i. e. full disk encryption, to protect
data while the system is offline. With our attack, it is still possible
to tamper with data, but it would become infeasible to construct
valid manipulated data since the encryption key is not known.

Probabilistic multiple reads could also help to ensure the integrity
of files which are partially read off the disk consecutively. For that,
the operating system could randomly remember blocks read off
the disk, or a hash of the block, respectively, and then schedule a
re-read of the same block while it has not been changed by the OS.
If the re-read block then has changed without the OS knowing, an
attack is more likely.

Considering CFI [1] as a defence to our attack turns out not to be
sufficient. In fact, an attacker could craft a malicious CFI-enabled
binary and launch it using our attack. Pointer Authentication (PA)
as deployed in ARMv8.3 helps to narrow down the attack surface
[38]. It is susceptible to pointer reuse attacks, though [32]. PA can

Le.g. https:/lore kernel.org/linux-fsdevel/CAHk-=wh2j+Yy28H_QxEdsP=k9xcHxjCG
1PqKAF2Uv=ckK8oPug@mail.gmail.com/

https://lore.kernel.org/linux-fsdevel/CAHk-=wh2j+Yy28H_QxEdsP=k9xcHxjCG1PqKAF2Uv=ckK8oPug@mail.gmail.com/
https://lore.kernel.org/linux-fsdevel/CAHk-=wh2j+Yy28H_QxEdsP=k9xcHxjCG1PqKAF2Uv=ckK8oPug@mail.gmail.com/

Subverting Linux’ Integrity Measurement Architecture

be used together with CFI in order strengthen defence mechanisms
against function pointer manipulation [32]. Consequently, it be-
comes hard, but not impossible, for a sophisticated attacker to craft
a malicious binary, and deploy it using our attack.

It is possible to discover our IMA subversion attack on executa-
bles with DRIVE [40]. It continuously monitors the memory image
and reports changes into a TPM-protected log file, so that a remote
party can verify it at al later point, and discover deviations from
a known good binary. Further, DRIVE can compare the memory
image in place with the initially loaded binary image, and in case
of deviations, raise a notification. Given that with our attack we
load different code on subsequent reads, DRIVE would detect the
modification on its next check, or a remote verifier at a later point,
respectively. DRIVE is only available for executables, so normal
files would still be susceptible to our attack.

Both dm-verity and fs-verity can be used to detect our attack
under certain circumstances because they verify every page before
loading it into memory. However, in contrast to IMA they do not
support a TPM as a trust anchor. This could be due to the rather
slow TPM, which would be used very frequently. As a result of not
involving a TPM, the assurance level of measurements for a verifier
is substantially weaker. Further, dm-verity and fs-verity only work
on read-only files, which may not be sufficient in some use cases.

Therefore, IMA serves some purposes that dm-verity and fs-
verity cannot serve. It can be improved, though, to counter our
discovered weakness. One approach could be to introduce blockwise
file measurements based on Merkle hash trees, like dm-verity and
fs-verity. That is, IMA would maintain multiple hashes per file, one
for each block, and maintain multiple records per file in the SML.
However, Merkle hash trees cannot be mapped to a TPM, per se.

As an alternative, simple block-wise measurements could be
considered, where files are divided into static sized blocks, and
then measured and recorded. Hence, another requirement would
be an appropriate block size for hashing. dm-verity and fs-verity
both use 4096 bytes. Taking into account the rather slow TPM,
too small block sizes could render the system unusable, due to the
latency added by the TPM. Bigger blocks, e.g. 4 MiB may alleviate
the latency. One prerequisite for that approach to work is that,
exactly like dm-verity and fs-verity, IMA must be invoked whenever
parts of a file are read. That, however, is not the case in current
implementations. Moreover, the whole approach would not only
change the measurement behaviour of IMA substantially, but also
that of a verifier investigating reported measurements in a remote
attestation process.

7 CONCLUSION

This paper has shown how a maliciously acting block device can
undermine the security guarantees IMA seeks to provide. By pre-
senting a concrete attack scenario we have shown how IMA is
relevant for critical infrastructures and how the attack breaks the
expectations its operators had when setting up the system. The
stealthiness of the attack prevents it from being detected and adds
to the severity of the issue.

In our evaluation we showed the feasibility of our attack. We
analysed the attack surface by evaluating how many bytes of differ-
ent sized executables can be manipulated, depending on available

ARES 2020, August 25-28, 2020, Virtual Event, Ireland

system main memory. We found out that the bigger the executable
and the bigger the already used main memory, the more bytes of
both text and data section of the executable could be successfully
manipulated. The text section was easier to manipulate, though,
starting at smaller executable sizes and less already occupied main
memory.

Future directions of research include the application and eval-
uation of our discovered attack to similar integrity measurement
implementations, such the System Monitor (SysMon) Services in
Microsoft Windows OS, and System Integrity Protection (SIP) in
Apple macOS. Further interesting research targets improving the
implementation of IMA in the Linux kernel, in order to remedy our
attack. This may be possible by introducing block-wise file measure-
ments based on Merkle hash trees, as already used by dm-verity.

Much like IMA, Windows can prevent executing binaries based
on their hashes?. To the best of our knowledge, unlike with IMA,
the hashes cannot be cryptographically signed, such that an at-
tacker simply can provide appropriate hashes along with the files
themselves. Although it is related, we leave it for future work to
explore how susceptible the Windows mechanism is to our attack.

REFERENCES

[1] Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2009. Control-Flow
Integrity Principles, Implementations, and Applications. ACM Trans. Inf. Syst.
Secur. 13, 1, Article Article 4 (Nov. 2009), 40 pages. https://doi.org/10.1145/
1609956.1609960

[2] Uzair Amir. 2018. Schneider Electric Shipped USB Drives Loaded with Mal-
ware. https://www.hackread.com/schneider-electric- shipped-usb-drives-
loaded-with-malware/

[3] Android Open Source Project. 2020. Implementing Dm-Verity. https://source.a
ndroid.com/security/verifiedboot/dm-verity

[4] Apple. 2019. About System Integrity Protection on Your Mac. https://support.
apple.com/en-us/HT204899

[5] Apple. 2020. About Secure Boot. https://support.apple.com/en-gb/HT208330

[6] Jacob Applebaum, Laura Poitras, Marcel Rosenbach, Christian Stocker,
and Jorg Schindler. 2013. The NSA Uses Powerful Toolbox in Ef-
fort to Spy on Global Networks - DER SPIEGEL - International.
https://www.spiegel.de/international/world/the-nsa-uses-powerful-toolbox-
in-effort-to-spy-on-global-networks-a-940969.html

[7] W.A. Arbaugh, D.J. Farber, and J.M. Smith. 1997. A Secure and Reliable Bootstrap
Architecture. In Proceedings. 1997 IEEE Symposium on Security and Privacy (Cat.
No.97CB36097). 65-71. https://doi.org/10.1109/SECPRI.1997.601317

[8] Marty Hernandez Avedon, Duncan Mackenzie, Andres Mariano Gorzelany,

Tina Burden, and Nick Schonning. 2018. Secure the Windows 10 Boot Pro-

cess. https://docs.microsoft.com/en-us/windows/security/information-protecti

on/secure-the-windows-10-boot-process

Stefan Berger, Ramon Céceres, Dimitrios Pendarakis, Reiner Sailer, Enriquillo

Valdez, Ronald Perez, Wayne Schildhauer, and Deepa Srinivasan. 2008. TVDc:

Managing Security in the Trusted Virtual Datacenter. (Jan. 2008).

Stefan Berger, Kenneth Goldman, Dimitrios Pendarakis, David Safford, Enriquillo

Valdez, and Mimi Zohar. 2015. Scalable Attestation: A Step toward Secure and

Trusted Clouds. IEEE Cloud Computing 2, 5 (Sept. 2015), 10-18. https://doi.org/

10.1109/MCC.2015.97

Felix Bohling. 2020. Subverting Linux’ Integrity Measurement Architecture (IMA).

Master’s thesis. University of Hamburg, Germany.

[12] Dane Brown, Owens Walker, Ryan Rakvic, Robert W. Ives, Hau Ngo, James Shey,

and Justin Blanco. 2018. Towards Detection of Modified Firmware on Solid State

Drives via Side Channel Analysis. In Proceedings of the International Sympo-

sium on Memory Systems (MEMSYS ’18). Association for Computing Machinery,

Alexandria, Virginia, USA, 315-320. https://doi.org/10.1145/3240302.3285860

Catalin Cimpanu. 2018. Ships Infected with Ransomware, USB Malware,

Worms. https://www.zdnet.com/article/ships-infected-with-ransomware-usb-

malware-worms/

Lucian Cojocar, Kaveh Razavi, and Herbert Bos. 2017. Off-the-Shelf Embedded

Devices as Platforms for Security Research. In Proceedings of the 10th European

—_
2

[10

[11

[13

[14

Zhttps://github.com/MicrosoftDocs/windowsserverdocs/blob/master/Windows
ServerDocs/identity/software-restriction-policies/sof tware-restriction-policies-
technical-overview.md

https://doi.org/10.1145/1609956.1609960
https://doi.org/10.1145/1609956.1609960
https://www.hackread.com/schneider-electric-shipped-usb-drives-loaded-with-malware/
https://www.hackread.com/schneider-electric-shipped-usb-drives-loaded-with-malware/
https://source.android.com/security/verifiedboot/dm-verity
https://source.android.com/security/verifiedboot/dm-verity
https://support.apple.com/en-us/HT204899
https://support.apple.com/en-us/HT204899
https://support.apple.com/en-gb/HT208330
https://www.spiegel.de/international/world/the-nsa-uses-powerful-toolbox-in-effort-to-spy-on-global-networks-a-940969.html
https://www.spiegel.de/international/world/the-nsa-uses-powerful-toolbox-in-effort-to-spy-on-global-networks-a-940969.html
https://doi.org/10.1109/SECPRI.1997.601317
https://docs.microsoft.com/en-us/windows/security/information-protection/secure-the-windows-10-boot-process
https://docs.microsoft.com/en-us/windows/security/information-protection/secure-the-windows-10-boot-process
https://doi.org/10.1109/MCC.2015.97
https://doi.org/10.1109/MCC.2015.97
https://doi.org/10.1145/3240302.3285860
https://www.zdnet.com/article/ships-infected-with-ransomware-usb-malware-worms/
https://www.zdnet.com/article/ships-infected-with-ransomware-usb-malware-worms/
https://github.com/MicrosoftDocs/windowsserverdocs/blob/master/WindowsServerDocs/identity/software-restriction-policies/software-restriction-policies-technical-overview.md
https://github.com/MicrosoftDocs/windowsserverdocs/blob/master/WindowsServerDocs/identity/software-restriction-policies/software-restriction-policies-technical-overview.md
https://github.com/MicrosoftDocs/windowsserverdocs/blob/master/WindowsServerDocs/identity/software-restriction-policies/software-restriction-policies-technical-overview.md

ARES 2020, August 25-28, 2020, Virtual Event, Ireland

[15]

[16]
[17]

[18

[19]

[20

[21]
[22]

[23]

[24

[25]

[26]

[27

[28]

[29

[30]

[31]

[32

[33]

[34

[35

[36]

[37]

Workshop on Systems Security (EuroSec’17). Association for Computing Machinery,
Belgrade, Serbia, 1-6. https://doi.org/10.1145/3065913.3065919

Luigi Coppolino, Michael Dr Jaeger, Nicolai Kuntze, and Roland Rieke. 2012. A
Trusted Information Agent for Security Information and Event Management. In
ICONS 2012.

Jonathan Corbet. 2011. Dm-Verity. https://lwn.net/Articles/459420/

Marco De Benedictis and Antonio Lioy. 2019. Integrity Verification of Docker
Containers for a Lightweight Cloud Environment. Future Generation Computer
Systems 97 (Aug. 2019), 236-246. https://doi.org/10.1016/j.future.2019.02.026
Ruan de Clercq and Ingrid Verbauwhede. 2017. A survey of Hardware-based
Control Flow Integrity (CFI). arXiv:cs.CR/1706.07257

Joan.G. Dyer, Mark Lindemann, Ronald Perez, Reiner Sailer, Leendert van Doorn,
and Sean W. Smith. 2001. Building the IBM 4758 Secure Coprocessor. Computer
34, 10 (Oct. 2001), 57-66. https://doi.org/10.1109/2.955100

Apostolos P. Fournaris, Lidia Pocero Fraile, and Odysseas Koufopavlou. 2017.
Exploiting Hardware Vulnerabilities to Attack Embedded System Devices: A
Survey of Potent Microarchitectural Attacks. Electronics 6, 3 (Sept. 2017), 52.
https://www.mdpi.com/2079-9292/6/3/52

Gentoo Foundation, Inc. 2019. Integrity Measurement Architecture.
//wiki.gentoo.org/wiki/Integrity_Measurement_Architecture

Virgil Gligor and Maverick Woo. 2018. Requirements for Root of Trust Estab-
lishment. In Security Protocols XXVI (Lecture Notes in Computer Science), Vashek
Matyas, Petr Svenda, Frank Stajano, Bruce Christianson, and Jonathan Anderson
(Eds.). Springer International Publishing, Cham, 192-202.

Glenn Greenwald. 2014. No Place to Hide: Edward Snowden, the NSA, and the U.S.
Surveillance State (first ed.). Metropolitan Books/Henry Holt, New York, NY.
Bare J. Christopher. 2006. Attestation and Trusted Computing. https://courses.
cs.washington.edu/courses/csep590/06wi/finalprojects/bare.pdf

Ludovic Jacquin, Adrian L. Shaw, and Chris Dalton. 2015. Towards Trusted
Software-Defined Networks Using a Hardware-Based Integrity Measurement Ar-
chitecture. In Proceedings of the 2015 1st IEEE Conference on Network Softwarization
(NetSoft). IEEE, London, UK, 1-6. https://doi.org/10.1109/NETSOFT.2015.7116186
Rick Kennell and Leah H. Jamieson. 2003. Establishing the Genuinity of Remote
Computer Systems. In Proceedings of the 12th Conference on USENIX Security
Symposium - Volume 12 (SSYM’03). USENIX Association, Washington, DC, 21.
The kernel development community. 2019. dm-verity. https://www.kernel.org/d
oc/html/latest/admin-guide/device-mapper/verity.html

The kernel development community. 2019. fs-verity: read-only file-based authentic-
ity protection. https://www.kernel.org/doc/html/latest/filesystems/fsverity.html
Obaid Khalid, Carsten Rolfes, and Andreas Ibing. 2013. On Implementing Trusted
Boot for Embedded Systems. In 2013 IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST). IEEE, Austin, TX, USA, 75-80. https://ieee
xplore.ieee.org/document/6581569

Charalambos Konstantinou and Michail Maniatakos. 2015. Impact of Firmware
Modification Attacks on Power Systems Field Devices. In 2015 IEEE International
Conference on Smart Grid Communications (SmartGridComm). 283-288. https:
//doi.org/10.1109/SmartGridComm.2015.7436314

Beth Levin and Marty Hernandez Avedon. 2019. Memory Integrity.
https://docs.microsoft.com/en-us/windows/security/threat-protection/device-
guard/memory-integrity

Hans Liljestrand, Thomas Nyman, Kui Wang, Carlos Chinea Perez, Jan-Erik
Ekberg, and N. Asokan. 2019. PAC It up: Towards Pointer Integrity Using ARM
Pointer Authentication. In Proceedings of the 28th USENIX Conference on Security
Symposium (SEC’19). USENIX Association, USA, 177-194.

Ryan S. McDowell, Hau Ngo, Ryan Rakvic, Owens Walker, Robert W. Ives,
and Dane Brown. 2019. Using Current Draw Analysis to Identify Suspicious
Firmware Behavior in Solid State Drives. In 2019 IEEE International Confer-
ence on Computational Science and Engineering (CSE) and IEEE International
Conference on Embedded and Ubiquitous Computing (EUC). 92-97. https:
//doi.org/10.1109/CSE/EUC.2019.00027

Microsoft. 2019. WDAC and Virtualization-Based Code Integrity (Windows 10) -
Windows Security. https://docs.microsoft.com/en-us/windows/security/threat-
protection/device-guard/introduction-to-device- guard-virtualization-based-
security-and-windows- defender-application- control

Karsten Nohl and Jakob Lell. 2014. BadUSB - On Accessories That Turn
Evil. https://www.blackhat.com/us-14/briefings.html#badusb-on-accessories-
that-turn-evil

Thomas Nyman, Jan-Erik Ekberg, Lucas Davi, and N. Asokan. 2017. CFI CaRE:
Hardware-Supported Call and Return Enforcement for Commercial Microcon-
trollers. In Research in Attacks, Intrusions, and Defenses, Marc Dacier, Michael
Bailey, Michalis Polychronakis, and Manos Antonakakis (Eds.). Springer Interna-
tional Publishing, Cham, 259-284.

Magnus Nystrom, Martin Nicholes, and Vincent J Zimmer. 2011. UEFI Net-
working and Pre-Os Security. Intel Technology Journal 15, 1 (2011), 80—
102. https://www.intel.com/content/dam/www/public/us/en/documents/res
earch/2011-vol15-iss- 1-intel-technology-journal. pdf

https:

[38

[39

[40]

[42

[43

[44

[46

[47

[48

(49]

[50

[51

[52

[53

[54

[55

[56

Felix Bohling, Tobias Mueller, Michael Eckel, and Jens Lindemann

Qualcomm Technologies, Inc. 2017. Pointer Authentication on ARMv8.3. Technical
Report.

Tobias Rauter, Andrea Héller, Johannes Iber, Michael Krisper, and Christian
Kreiner. 2017. Integration of Integrity Enforcing Technologies into Embedded
Control Devices: Experiences and Evaluation. In 2017 IEEE 22nd Pacific Rim
International Symposium on Dependable Computing (PRDC). Christchurch, New
Zealand, 155-164. https://doi.org/10.1109/PRDC.2017.29

Andre Rein. 2017. DRIVE: Dynamic Runtime Integrity Verification and Eval-
uation. In Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security (ASIA CCS ’17). Association for Computing Machinery,
New York, NY, USA, 728-742. https://doi.org/10.1145/3052973.3052975

Jordan Robertson and Michael Riley. 2018. China Used a Tiny Chip
in a Hack That Infiltrated U.S. Companies. Bloomberg.com (Oct. 2018).
https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-
china-used-a-tiny-chip-to-infiltrate-america- s-top-companies

Reiner Sailer, Trent Jaeger, Xiaolan Zhang, and Leendert van Doorn. 2004.
Attestation-Based Policy Enforcement for Remote Access. In Proceedings of the
11th ACM Conference on Computer and Communications Security - CCS 04. ACM
Press, Washington DC, USA, 308. https://doi.org/10.1145/1030083.1030125
Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert van Doorn. 2004. Design
and Implementation of a TCG-Based Integrity Measurement Architecture. In
Proceedings of the 13th Conference on USENIX Security Symposium (SSYM’04),
Vol. 13. USENIX Association, San Diego, CA, USA, 16.

Andreas Steffen. 2012. The Linux Integrity Measurement Architecture andTPM-
Based Network Endpoint Assessment. In Linux Security Summit. San Diego, CA,
USA. https://www.strongswan.org/lss2012.pdf

Pawel Swierczynski, Marc Fyrbiak, Philipp Koppe, Amir Moradi, and Christof
Paar. 2017. Interdiction in practice-Hardware Trojan against a high-security
USB flash drive. Journal of Cryptographic Engineering 7, 3 (2017), 199-211. https:
//doi.org/10.1007/s13389-016-0132-7

Trusted Computing Group. 2018. Standards for Securing Industrial Equip-
ment. https:/trustedcomputinggroup.org/wp-content/uploads/04_TCG_St
dsSecureEquip_2018_Web.pdf

Trusted Computing Group. 2018. TCG Guidance for Securing Network Equipment
Using TCG Technology. https://trustedcomputinggroup.org/wp-content/uplo
ads/TCG_Guidance_for_Securing_NetEq_1_0r29.pdf

Trusted Computing Group. 2020. Welcome To Trusted Computing Group. https:
//trustedcomputinggroup.org/

J. Douglas Tygar and Bennet Yee. 1991. Dyad: A System for Using Physically Se-
cure Coprocessors. Proceedings of the Joint Harvard-MIT Workshop on Technolog-
ical Strategies for the Protection of Intellectual Property in the Network Multimedia
Environment (May 1991).

Xueyang Wang, Charalambos Konstantinou, Michail Maniatakos, Ramesh Karri,
Serena Lee, Patricia Robison, Paul Stergiou, and Steve Kim. 2016. Malicious
Firmware Detection with Hardware Performance Counters. IEEE Transactions
on Multi-Scale Computing Systems 2, 3 (July 2016), 160~173. https://doi.org/10.
1109/TMSCS.2016.2569467

Zhaohui Wang, Ryan Johnson, and Angelos Stavrou. 2012. Attestation & Authen-
tication for USB Communications. In 2012 IEEE Sixth International Conference on
Software Security and Reliability Companion. 43-44. https://doi.org/10.1109/SE
RE-C.2012.43

Bo Yang, Yu Qin, Yingjun Zhang, Weijin Wang, and Dengguo Feng. 2016. TMSUIL:
A Trust Management Scheme of USB Storage Devices for Industrial Control
Systems. In Information and Communications Security (Lecture Notes in Com-
puter Science), Sihan Qing, Eiji Okamoto, Kwangjo Kim, and Dongmei Liu (Eds.).
Springer International Publishing, Cham, 152-168.

Jonas Zaddach, Anil Kurmus, Davide Balzarotti, Erik-Oliver Blass, Aurélien
Francillon, Travis Goodspeed, Moitrayee Gupta, and Ioannis Koltsidas. 2013.
Implementation and Implications of a Stealth Hard-Drive Backdoor. In Proceed-
ings of the 29th Annual Computer Security Applications Conference (ACSAC ’13).
Association for Computing Machinery, New Orleans, Louisiana, USA, 279-288.
Kim Zetter. 2015. How the NSA’s Firmware Hacking Works and Why It’s So
Unsettling. Wired (Feb. 2015). https://www.wired.com/2015/02/nsa-firmware-
hacking/

Mimi Zohar and Dmitry Kasatkin. 2018. Integrity Measurement Architecture
(IMA). https://sourceforge.net/p/linux-ima/wiki/Home/

Mimi Zohar and David Safford. 2010. An Overview of the Linux Integrity Sub-
system. http://downloads.sf net/project/linux-ima/linux-ima/Integrity_overvi
ew.pdf

Mimi Zohar, David Safford, and Reiner Sailer. 2009. Using IMA for Integrity
Measurement and Attestation. https://blog linuxplumbersconf.org/2009/slides
/David-Stafford-IMA_LPC.pdf

https://doi.org/10.1145/3065913.3065919
https://lwn.net/Articles/459420/
https://doi.org/10.1016/j.future.2019.02.026
http://arxiv.org/abs/cs.CR/1706.07257
https://doi.org/10.1109/2.955100
https://www.mdpi.com/2079-9292/6/3/52
https://wiki.gentoo.org/wiki/Integrity_Measurement_Architecture
https://wiki.gentoo.org/wiki/Integrity_Measurement_Architecture
https://courses.cs.washington.edu/courses/csep590/06wi/finalprojects/bare.pdf
https://courses.cs.washington.edu/courses/csep590/06wi/finalprojects/bare.pdf
https://doi.org/10.1109/NETSOFT.2015.7116186
https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/verity.html
https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/verity.html
https://www.kernel.org/doc/html/latest/filesystems/fsverity.html
https://ieeexplore.ieee.org/document/6581569
https://ieeexplore.ieee.org/document/6581569
https://doi.org/10.1109/SmartGridComm.2015.7436314
https://doi.org/10.1109/SmartGridComm.2015.7436314
https://docs.microsoft.com/en-us/windows/security/threat-protection/device-guard/memory-integrity
https://docs.microsoft.com/en-us/windows/security/threat-protection/device-guard/memory-integrity
https://doi.org/10.1109/CSE/EUC.2019.00027
https://doi.org/10.1109/CSE/EUC.2019.00027
https://docs.microsoft.com/en-us/windows/security/threat-protection/device-guard/introduction-to-device-guard-virtualization-based-security-and-windows-defender-application-control
https://docs.microsoft.com/en-us/windows/security/threat-protection/device-guard/introduction-to-device-guard-virtualization-based-security-and-windows-defender-application-control
https://docs.microsoft.com/en-us/windows/security/threat-protection/device-guard/introduction-to-device-guard-virtualization-based-security-and-windows-defender-application-control
https://www.blackhat.com/us-14/briefings.html#badusb-on-accessories-that-turn-evil
https://www.blackhat.com/us-14/briefings.html#badusb-on-accessories-that-turn-evil
https://www.intel.com/content/dam/www/public/us/en/documents/research/2011-vol15-iss-1-intel-technology-journal.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/research/2011-vol15-iss-1-intel-technology-journal.pdf
https://doi.org/10.1109/PRDC.2017.29
https://doi.org/10.1145/3052973.3052975
https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies
https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies
https://doi.org/10.1145/1030083.1030125
https://www.strongswan.org/lss2012.pdf
https://doi.org/10.1007/s13389-016-0132-7
https://doi.org/10.1007/s13389-016-0132-7
https://trustedcomputinggroup.org/wp-content/uploads/04_TCG_StdsSecureEquip_2018_Web.pdf
https://trustedcomputinggroup.org/wp-content/uploads/04_TCG_StdsSecureEquip_2018_Web.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_Guidance_for_Securing_NetEq_1_0r29.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_Guidance_for_Securing_NetEq_1_0r29.pdf
https://trustedcomputinggroup.org/
https://trustedcomputinggroup.org/
https://doi.org/10.1109/TMSCS.2016.2569467
https://doi.org/10.1109/TMSCS.2016.2569467
https://doi.org/10.1109/SERE-C.2012.43
https://doi.org/10.1109/SERE-C.2012.43
https://www.wired.com/2015/02/nsa-firmware-hacking/
https://www.wired.com/2015/02/nsa-firmware-hacking/
https://sourceforge.net/p/linux-ima/wiki/Home/
http://downloads.sf.net/project/linux-ima/linux-ima/Integrity_overview.pdf
http://downloads.sf.net/project/linux-ima/linux-ima/Integrity_overview.pdf
https://blog.linuxplumbersconf.org/2009/slides/David-Stafford-IMA_LPC.pdf
https://blog.linuxplumbersconf.org/2009/slides/David-Stafford-IMA_LPC.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Measured Boot
	2.2 Secure Boot
	2.3 Remote Attestation
	2.4 Integrity Measurement Architecture (IMA)

	3 Subverting IMA
	3.1 Threat Model
	3.2 Structural Problems
	3.3 Implementation

	4 Evaluation
	5 Related Work
	6 Discussion
	6.1 Attack Scope
	6.2 Mitigations

	7 Conclusion
	References

