
Accountant: Protection of Data Integrity and Identification of Malicious
Nodes in In-network Data Processing

David Jost and Mathias Fischer
Universität Hamburg, Germany

{jost, mfischer}@informatik.uni-hamburg.de

Keywords: Data Aggregation, Distributed Networks, Integrity, Attacker Identification, Sensor Networks

Abstract: Data integrity in distributed data sensing and processing platforms or middlewares is an important issue,
especially if those platforms are open to anyone. To leverage the resources of participating nodes and to
enhance the scalability, nodes can be included in the data processing, e.g., in the aggregation of results. In an
open system, it is also likely that some participating nodes are malicious and lie about their sensed values or
about the results of data processed by them. Current approaches that preserve data integrity for in-network
processing require expensive cryptographic operations. With Accountant we propose a new approach, which
requires significantly less computation at the expense of slightly more signalling overhead. Furthermore, our
approach cannot only preserve data integrity, but also allows to identify malicious nodes. For that, Accountant
uses multiple inner node-disjoint trees for data dissemination and hash trees for preserving the data integrity.
We compare it to existing solutions, showing that with only minor additional messaging overhead, Accountant
can protect the data integrity and can identify attackers at the same time.

1 INTRODUCTION

Smart cities are in close reach. They benefit from
the rise of the Internet of Things (IoT) that manifests
in a multitude of deployed sensors that add to the
knowledge base of cities. These sensors, e.g., raise
large quantities of environmental data that is of in-
terest to (city) governments, organisations, but also
citizens (Bornholdt et al., 2019, Kumar and Madria,
2013).

To orchestrate sensors, and to store and process
the resulting data volume, distributed data sensing and
processing platforms or middlewares are deployed,
e.g., SANE (Bornholdt et al., 2019, Villanueva et al.,
2013, Mohamed et al., 2017). Some of these distrib-
uted platforms also come with in-network data pro-
cessing to make efficient use of the resources of par-
ticipating nodes, e.g., for data aggregation (Fasolo
et al., 2007). Relaying nodes aggregate received data
to forward only single values and to reduce the data
to be exchanged.

However, especially in open data sensing and pro-
cessing platforms, nodes can be malicious and might
inject false data. The state of the art contains several
approaches, e.g., (Mahimkar and Rappaport, 2004,He
et al., 2008, Chen et al., 2012, Kumar and Madria,
2013), that can protect the data integrity during such

distributed data processing. However, all of them use
expensive cryptographic operations.

The main contribution of this paper is Accountant,
an integrity preserving data processing scheme that
can identify malicious nodes injecting either faked
values or suppressing the results of other nodes. The
approach focuses on data sensing and processing plat-
forms, like the SANE platform (Bornholdt et al.,
2019), in which in theory every node could commu-
nicate with any other node. Another assumption is
that nodes contribute to the measurements, directly
when the node is a sensor or indirectly when the
node is acting on behalf of attached sensors. For
this reason, it cannot be applied directly to Wireless
Sensor Networks (WSNs), but might be used to inter-
connect the base stations of different WSNs. Every
node joining the system is contributing its resources
for data sharing and processing. To ensure that the
in-network processing produces the correct outcome,
Accountant uses multiple inner node-disjoint overlay
trees. As a result, malicious nodes cannot lie about
the values of their children anymore. They can only
influence the result in the tree they are actually for-
warding information. In all other trees they are in
a leaf position. Accountant even goes one step fur-
ther and allows to identify malicious nodes. For that,
the integrity of exchanged information is protected by

mapping exchanged message values to hash trees. We
evaluate the performance of Accountant by compar-
ing its message overhead and cryptographic overhead
to existing approaches. Our analysis indicates that
Accountant requires less computational power at the
expense of slightly more communication overhead.

The remainder of this paper is structured as fol-
lows: Section 2 describes the considered attacker
model, followed by related work in the field of integ-
rity preservation in distributed networks in Section 3.
Accountant is described in detail in Section 4 and ana-
lyzed in Section 5. Finally, Section 6 concludes the
paper.

2 ATTACKER MODEL

In an open and distributed data sensing and processing
platform, data is contributed by most nodes in the net-
work and processed in a distributed fashion. Nodes
that forward data for others can modify, aggregate,
and relay data of other nodes. This results in differ-
ent attacker models, which attempt to modify the final
aggregation result, described in the following:
• A node may lie about its own sensed values, but

does not lie consistently across different aggrega-
tion trees. This misinformation propagates in the
aggregation process and results in a wrong overall
result.

• The attacker may alter the data it receives from
other nodes, which it is supposed to aggregate.
The forwarded data then does not represent the
children’s original data anymore.

• A node may deny or suppress the data it received
from child nodes.
Furthermore, these three attacker types can come

at different numbers, and can either operate independ-
ently or in a colluding manner.

3 RELATED WORK

There exists a large body of work in the area of sensor
networks, and distributed data processing in such net-
works (Fasolo et al., 2007). These approaches are en-
abling aggregation over arbitrary networks, but can-
not preserve the integrity of the aggregated data. Cer-
tain concepts also take data integrity into account
(Mahimkar and Rappaport, 2004,He et al., 2008,Chen
et al., 2012, Kumar and Madria, 2013). Even though
these integrity preserving approaches are considered
for low power environments, they require either rel-
atively complex asymmetric cryptography, or a lot of

additional messaging. The following describes some
of those works, and highlights their problems in re-
gard to our goal of providing efficient integrity pro-
tection and liar identification in distributed networks.

SecureDAV (Mahimkar and Rappaport, 2004)
uses clusters to group nodes. Each cluster has spe-
cial node, the cluster head, which aggregates the data
of all the other nodes in the cluster. Afterwards, the
cluster head sends the aggregate back to its children,
so that they confirm the legitimacy of the aggrega-
tion. The child nodes verify that the aggregate lies
within a certain threshold. If so, they sign the aggreg-
ate with their part of a secret share, which the cluster
head subsequently combines, to obtain a full signature
for the base station. Should not enough sensors confer
with the aggregation of the cluster head, the resulting
signature would be invalid. Additionally, the sensors
sign their values with a private key, from which the
cluster head constructs a Merkle Hash Tree (Merkle,
1990), verifiable by the base station. This avoids over-
reliance on the cluster heads. SecureDAV requires
asymmetric cryptographic operations, resulting in a
lot of computational load on sensors. Even though
the Merkle Hash Tree provides integrity, it is not used
to identify an attacker.

Sensors in iPDA (He et al., 2008) split their data
into multiple slices, encrypt them with pre-shared
keys, and send them to different aggregators. With
this, a sensor hides its value from a single aggregator,
preserving its data privacy. Intermediate nodes can
(additively) aggregate the received values and send
their aggregate towards the base station. Integrity is
provided by using multiple node-disjoint trees, where
nodes send their results over both trees, which do not
share any common nodes (except root). iPDA as well
does not provide any means to identify the source of
the mismatching values.

RCDA (Chen et al., 2012) provides data integrity
and raw data recoverability by encoding sensor data
into the stream of messages, allowing the base station
to recover all data and verify the result. The encod-
ing is effectively the original data stringed together.
It is encrypted with Elliptic Curve ElGamal (EC-EG)
and signed with the homomorphic signature scheme
by Boneh et al. (Boneh et al., 2003), both of which
allow for additive aggregation. In the end, the base
station is able to decode and verify all measurements.
This approach sends the entire raw data up to the base
station for it to verify. Additionally, it uses asymmet-
ric cryptography and does not identify the lying node.

Lastly, PIP (Kumar and Madria, 2013) describes a
scheme where nodes first encrypt their data with EC-
EG, before splitting it and distributing it to neighbour-
ing nodes. This provides a certain anonymity towards

the cluster head, which will eventually receive all
parts from all its children, without being able to attrib-
ute it to one in particular. Integrity is provided via an
embedded integrity key, which can only be verified by
the base station. Aggregation is performed as of the
homomorphic properties of Shamir’s Secret Sharing
(SSS) and Recursive Secret Sharing (RSS, (Parakh
and Kak, 2010)) and a scrambling key. Similar to the
other approaches, PIP uses asymmetric cryptography
and does not detect which node actually lied.

These approaches show different ways on employ-
ing data integrity for in-network aggregation. Neither
of them takes attribution into account and most re-
quire rather intensive cryptographic operations. Thus
a new approach must integrate the identification of at-
tackers into the integrity preservation while staying
lightweight.

4 SYSTEM MODEL

To perform aggregation in a structured manner, Ac-
countant utilises overlay trees to organise message
routing. It uses multiple inner node-disjoint trees,
so that data aggregation is performed over all trees in
parallel. The differently structured trees allow to dis-
close lying nodes and prevent denying nodes to sup-
press results of any of its children. By using enough
trees, a majority of valid results will be established,
exposing any incorrect behaviour. To identify the at-
tacker, cryptographic hashes in the form of a hash tree
are used. This allows Accountant to follow mismatch-
ing hashes and pinpoint the lying node in case the ag-
gregation results of different trees do not match. Sec-
tions 4.2 and 4.3 describe the overlay trees and hash
tree in more detail.

Accountant operates in two major phases. The
first one is data aggregation (cf. Section 4.4), where
the nodes organized in overlay trees answer the re-
quest for data that is flooded in the trees starting from
the root node r. The data aggregation starts at the
leaf nodes that forward their values to their parent
nodes. Intermediate nodes aggregate their value with
the ones obtained from their children, and forward the
result to their parents in all trees again. In addition,
each node adds a unique hash to its message. Ag-
gregating nodes combine those hashes according to
the rules of the hash tree computation. Reaching the
root node, the aggregated data of each overlay tree can
be compared with the others. If there are differences
in the results, a node has suppressed or lied about val-
ues of its children. This triggers the second phase.

In the second phase (cf. Section 4.5), lying nodes
are identified by using the information of overlay

trees and the hash tree. As the overlay trees provide
a majority of correct values, the erroneous trees can
easily be detected. The reported hashes of the er-
roneous trees are reproduced with hashes from cor-
rect ones, and the procedure follows level by level the
mismatching hashes. In the end, Accountant requires
only a subset of all hashes to actually identify the at-
tacker.

4.1 Assumptions

For our approach, we use the following assumptions:

• All nodes share a unique (symmetric) key (Ki,r |
∀i ∈ V) with the root node r, to allow them to
authenticate their hashes without having to use
asymmetric cryptography. We assume that every
node has obtained a certificate once during an ini-
tial bootstrapping from the root r. Both derive the
symmetric key from this as well as the unique re-
quest id, allowing them to share the secret without
directly exchanging it.

• Each node is an intermediate node in at most one
overlay tree and a leaf node in all others, as de-
scribed in Section 4.2.

• All nodes in the overlay can reach each other if
required.

4.2 Overlay Tree Construction

For Accountant to note differences in the aggregation,
it requires comparable aggregation results. These are
received via different overlay trees. All trees share
the same nodes, they are just differently ordered, such
that any node is an intermediate node in at most one
of those trees and a leaf node in all others (except the
root node that always stays the same). These inner
node-disjoint trees, as proposed by (Brinkmeier et al.,
2009), allow do disclose a malicious node that lies
about or drops the value of its children.

Figure 1 displays three trees with the same nodes,
rearranged accordingly to exhibit the property of in-
ner node-disjointness. The root node stays fixed, as
it is the initiator of the requests. The graphic also
illustrates why those trees are necessary in the first
place: Assuming node 2 is malicious, then it is able
to lie about the values of its children 3, 4, and 5 in
T1, without being noticed. But taking the other trees
into account, 2 has no longer the ability to influence
or dismiss the values any of its children sends to their
parent without being noticed. Thus, at the top of the
tree, the difference in values is visible.

For Accountant actually being able to identify in
which tree the error occurred, a majority of valid trees

r

1

2

3 4 5

6

7 8 9

10

11 12 13

14 27

(a) T1

3

4

1 2 5

7

6 8 9

11

10 12 13

(b) T2

8

5

2 3 4

9

1 6 7

12

10 11 13

(c) T3

Figure 1: Three trees, constructed as described in Section 4.2, where each node is intermediate in at most one tree. As r is
fixed, it is enough to only regard one subtree here to show the constraints.

with valid results is required. Thus, with m being
the number of attackers, n = 2m+ 1 trees (Lamport,
2006) are necessary to obtain a correct result.

To meet the requirement of any node being in an
intermediate position in at most one tree, for all n
trees, it is necessary to use trees with enough leaf po-
sitions available. Equation 1 shows that this is solved
by setting the node degree d to at least the number of
trees n. l represents the required amount of leaf nodes
and N the number of total nodes in a tree.

l ≥ n · bN/dc (1)

4.3 Hash Tree

To be able to identify misbehaving nodes, Accountant
uses a Merkle Hash Tree (Merkle, 1990). As can be
seen in Figure 2, each node’s hash represents a leaf
in the hash tree. They are then combined pairwise,
leading to a final hash (h1−8 in Figure 2). This reduces
the number of required hashes per level to represent
the same data. A combined hash can be reproduced
later on by combining the hashes it stems from.

Aggregating nodes of the overlay tree follow the
schema of the hash tree to combine hashes of their
descendants as soon as possible. As the overlay trees
differ in their order, nodes may not pass on the same
hashes in one tree as they do in another. Nonetheless
hashes are always combined in the same order as dic-
tated by the hash tree, which may result in aggregating
nodes passing on more than one hash, before they are
combined later on.

To indicate a hash of node i, generated in a specific
overlay tree t, ht

i is used.

4.4 Phase 1: Data Aggregation

The first phase of Accountant describes the request
and aggregation of data. It may be divided into those
two stages of request and aggregation. All actions

h1−8

h1−4

h1−2

h1

1

h2

2

h3−4

h3

3

h4

4

h5−8

h5−6

h5

5

h6

6

h7−8

h7

7

h8

8

Figure 2: Design of a hash tree for eight sources.

are performed for each overlay tree individually. This
allows us to focus on operations in one tree for now,
though they are applied for each tree.

In the stage of request, the root node r floods a
request for data on all available trees. This request
is then answer via a reverse-multicast starting at the
leaf positions in all overlay trees that are constructed
as described in Section 4.2. This allows r to gather
multiple views on the same data.

Aggregation: Leaf nodes answer directly with
their data vi and the hash hi of that data, which is com-
bined with the shared secret Ki,r and a nonce ω (sup-
plied by r during the request) of that request (cf. Equa-
tion 3) to make it unique. Intermediate nodes aggreg-
ate the values received by their children together with
their own value (cf. Equation 2). Additionally, they
extend the list of hashes with their own and combine
any hashes according to the hash tree as given in Sec-
tion 4.3 (cf. Equation 4). As of the fixed nature of the
hash tree, it will not correspond to the structure of the
overlay tree. Thus, nodes may send more than just
one hash, though combining as many as possible.

agg(i) = vi ◦
(
© j∈succ(i) agg(j)

)
(2)

hi = hash(vi,ω,Ki,r) (3)
datai = (vi,agg(i),{hi, . . .}) (4)

To provide an example, Figure 3 shows an excerpt
of the sent data in T1 (cf. Figure 1a). Here, node 3
sends it data up to its parent 2. Node 2, being an inter-
mediate node, then combines all received values with

1

2

3

data3 = (v3,agg(3),{h3})

4 5

data2 = (v2,agg(2,3,4,5),{h2,h5,h3−4})

Figure 3: Example of data sent in phase 1.

its own, producing the aggregate agg(2,3,4,5). Ad-
ditionally, the corresponding hashes are constructed:
the hashes of nodes 3 and 4 can be combined to h3−4,
so that node 2 sends the set of h2, h5, and h3−4 to its
parent 1.

Upon receiving the aggregations from the multiple
overlay trees, r can compare them with each other.
If not all off them match, an inconsistency has been
detected and phase 2 of identifying the liar can begin.

4.5 Phase 2: Identification of Lying
Nodes

The second phase tries to iteratively narrow down the
lying node. Starting at the root it follows unmatching
hashes down the corresponding subtrees, eventually
leading to the lying node, i.e., the attacker.

Due to the majority of well-behaving trees
(cf. Section 4.2), we know which trees provided truth
and can limit the search to the erroneous trees. In the
example of one attacker (m = 1), this would also lead
to only one tree being investigated, as the other two
would match with each other.

Starting at the root node of the tree in question
(this is repeated for all other erroneous trees), the de-
livered hashes from the direct children are verified to
find the unmatching subtree. Would we now follow
the normal style of a Merkle Hash Tree and verify sent
hashes by combining the children’s hashes, we would
not be able to detect lower/earlier manipulations, as
the henceforth combined hashes would verify the par-
ent, though they actually stem from a hash of false
data. Thus, we retrieve the hashes from other nodes,
which also calculated those, but in another (correct)
tree. This allows us to verify hashes in one tree with
values and/or hashes from another. As an example,
using the notation introduced in Section 4.3, the hash
of h1

3−4 may be checked against h3−4 = hash(h2
3 ‖h3

4).
Is a mismatch detected, the procedure is repeated

within that subtree in which the inconsistency has
been identified. On the other hand, if the hashes of
all children have successfully been verified, it indic-
ates that the parent/current node is the actual liar.

Algorithm 1 displays the described logic. Func-
tions lefthash and righthash return the child
hashes required to construct the hash of i. The actual

identification function identify checks the hashes
of each subtree and continues to investigate into mis-
matching subtrees (cf. Line 7). If no mismatch has
been found, this subtree is correct and the parent p is
identified to be the malicious node (cf. Line 9).

1 func identify(p, hashes):
Input: p = parent
hashes = hashes {ht∈T

i , . . .}
Data: T = erroneous trees
Data: G = correct trees

2 for hi ∈ hashes do
3 l← lefthash(hi)
4 r← righthash(hi)

5 if l = r = NIL and hi 6= hg∈G
i then

return i // i is a leaf

6 x← hash(hp∈G
l ‖hq∈G

r)
7 if x 6= h then // erroneous subtree
8 return identify(i,

{ht
j | j ∈ it .children})

9 return p // parent node is the liar

Algorithm 1: Algorithm to detect a liar used in
the second phase of Accountant.

In conclusion, Accountant describes a protocol
consisting of the normal data aggregation phase and
the additional liar identification phase. It requests
data over multiple aggregation trees, where the inner
nodes are only part of the aggregation at most once.
This allows Accountant to detect differentiations per-
formed by altering and denying attackers. Using the
simultaneously created hash trees, it identifies the at-
tacker in a second phase.

5 EVALUATION

In this section, we will evaluate our presented ap-
proach, by comparing it to selected scenarios. The
following analyses each of the selected approaches
and compares them in regard to scalability. We use
the extended notation shown in Table 1.

Number of messages First, we analyse the number
of sent messages of one complete routine run, com-
paring simple, intuitive methods with existing work
and our approach.

Direct connection: Each node sends its data dir-
ectly to r, resulting in N messages sent. This is used as
a baseline for comparison with the other approaches.

Table 1: Notation used in the evaluation.

m Number of attackers
n Number of trees (i.e. n = 2m+1)
N Number of nodes per tree (i.e. N = |V |)
d Node degree (i.e. d ≥ n for Accountant)
H Height of a tree (i.e. H = logd N)
cp Costs of asymmetric encryption
ca Costs of homomorphic operations
ch Costs of (secret) hashing

cA.1 = N (5)

Without aggregation over the tree: Each node
sends its data over the overlay tree to r. A message
from a leaf node has to traverse also its parental links,
resulting in l messages per node. This accumulates to
∑

H−1
i=0 idi (cf. Equation 6) messages in total.

cA.2 =
H−1

∑
i=0

idi

=
d−HdH +(H−1) ·dH+1

(1−d)2

=
d− logd N ·dlogd N

(1−d)2

+
(logd N−1) ·dlogd N+1

(1−d)2

(6)

SecureDAV (Mahimkar and Rappaport, 2004): In
SecureDAV, each node sends its data to its parent,
which aggregates it, asks all children for verifica-
tion and then forwards it. This results in three mes-
sages per node. Additionally, integrity verification is
performed over a Merkle Hash Tree, adding another
log2 2H+1:

cA.3 = 3 ·N + logd N +1 (7)

PIP (Kumar and Madria, 2013): Messages are
split into x several pieces and distributed to a node’s
x neighbours. After that, nodes send the data to their
cluster head/parent. This gives 2x− 1 messages per
node, which can be summed up to 2N−3, as the base
station does not forward any messages.

cA.4 = 2 ·N−3 (8)

Accountant: Aggregating the data in the tree res-
ults in constant size messages, so that the level of the
sender in a tree does not have any impact. We send
e = N− 1 messages up the overlay tree. Due to the

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000

0

1

2

3

m = 1

Number of nodes (N)

N
um

be
r

of
m

es
sa

ge
s

pe
r

no
de

direct
without aggregation
SecureDAV
PIP
Accountant

Figure 4: Number of messages a single node sends during
a normal routine with increasing number of participating
nodes for each of the described approaches.
Table 2: Scalability in regard to amount of messages given
in big O notation.

Direct O (N)
Without aggregation O

(
logd N ·dlogd N

)
SecureDAV O (N)
PIP O (N)
Accountant O (n ·N)

necessary integrity preservation, this is done for all n
trees. We do not add the overhead of the rarely per-
formed liar identification, as this functionality is not
part of the normal operation mode. It would other-
wise add a less impactful amount of m ·d · log2 2H+1 =
m ·n · (logn N +1) messages to the total.

cA.5 = n · (N−1) (9)

Figure 4 compares the costs of Equations 5 to 9.
It shows that Accountant is comparably efficient as
SecureDAV. The communication over a tree without
aggregation performs, as expected, worst, as the tree
is not leveraged in any way. PIP performs best, as it
does not use back-and-forth communication like Se-
cureDAV or multiple overlay trees like Accountant.

Table 2 shows the above results in comparable big
O notation. Again, the tree communication without
aggregation performs worst, all others are classified
as O (N), whereby Accountant depends on the num-
ber of trees, meaning effectively the number of at-
tackers that are to be identifiable. Accountant per-
forms worse, because it supplies this feature of at-
tacker identification. If it would only provide integ-
rity, the number of trees could be reduced to 2, leav-
ing it to be better than SecureDAV, though still less
efficient than PIP.

Cryptographic load In our second analysis, we
highlight the differences in cryptographic overhead of

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000

0

2

4

6

m = 1
cp = 6
ca = 2
ch = 1

Number of nodes (N)

C
om

pu
ta

ti
on

al
co

st
s

pe
r

no
de

homomorph
SecureDAV
PIP
Accountant

Figure 5: Costs of cryptographic operations a node has to
perform during a single routine in comparison to increasing
network size. The discussed approaches are shown, assum-
ing asymmetric cryptography to be six times more expens-
ive than hashing operations.

Table 3: Computational costs of cryptographic operations
in big O notation.

Hom. Enc. O (cp ·N + ca ·N)
SecureDAV O (cp ·N + ca/N + ch ·N)
PIP O

(
cp ·N + ca ·dlogd N

)
Accountant O (ch ·n ·N)

the different approaches. We assume costs for asym-
metric encryption (cp), homomorphic operations (ca),
and hashing (ch), to distinguish their impact on the
computational costs of the individual approach. We
assume asymmetric encryption to be the most the re-
source intensive operation, and homomorphic opera-
tions to be only bit more intensive than ordinary hash-
ing.

Homomorphic encryption: We assume a system,
where each node encrypts its data with an asymmet-
ric, homomorphic cipher, e.g., ElGamal, for r. Nodes
pass data to their parent, which in turn aggregates the
data of its children and its own together as of the ho-
momorphic properties of the cipher. This continues
until the root node is reached. As a result, there will
be N messages encrypted, while bN/dc nodes also
perform the aggregation. This will result in crypto-
graphic costs of cB.1, seen in Equation 10.

cB.1 = N · cp + bN/dc · ca (10)

SecureDAV: Nodes do not encrypt their data, but
partially sign the query of their cluster head for veri-
fication, which then combines the signatures. Both
are asymmetric operations, yielding costs of x · cp +
ca/x per node, resulting in cp · (N− 1)+ ca/(N− 1).
In addition, hashes for the Merkle Hash Tree are gen-
erated, costing ch ·

(
N + b(2H+1−1)/2c

)
. This con-

cludes with costs cB.2 as given by Equation 11.

cB.2 = cp · (N−1)+
ca

N−1

+ ch ·
(

N +
⌊
(2logd N+1−1)/2

⌋) (11)

PIP: In PIP, nodes firstly encrypt their data, be-
fore splitting and distributing it. The aggregation uses
homomorphic properties, which together returns costs
of N · cp + ca · b(dH+1−1)/2c.

cB.3 = cp ·N + ca ·
⌊(

dlogd N+1−1
)
/2
⌋

(12)

Accountant: Each node hashes its data including a
unique secret, shared with r. Thus we have N hashing
operations and an additional b(2H+1− 1)/2c hashes
(without secret) for the binary hash tree, combining
existing messages to reduce message size. Including
the hash operations required for verifying hashes in
the second phase, this results in costs of cB.2 as given
in Equation 13.

cB.4 = ch ·
(

n ·
(

N +
⌊(

2logn N+1−1
)
/2
⌋)

+m ·n · (logn N +1))
(13)

Figure 5 shows the above equations in compar-
ison. We set asymmetric encryption to be six times
more expensive than normal hashing (based on EC-
EG and SHA3 instruction costs, as approximated
from (Gamal, 1985, Bertoni et al., 2009, Granlund,
2019, Fog, 2019)). As Accountant uses no asymmet-
ric cryptographic operations at all, it performs best
here. Even with more trees, it requires less compu-
tational power than the other approaches. The other
three approaches scale in the same manner and their
costs are mainly determined by the number of homo-
morphic operations.

Table 3 shows the corresponding abstraction of the
above results. It is visible, that Accountant performs
better, as long as cp≥ ch ·n is valid, meaning it can use
more trees to be able to detect multiple attackers, and
still require less computational power than the other
approaches.

6 CONCLUSION

In this paper we proposed Accountant to efficiently
protect the integrity during data aggregation in dis-
tributed sensing and processing platforms. Our ap-
proach can detect attackers that either modify the val-
ues of their children or suppress them. Moreover, Ac-
countant is able to detect multiple attackers in the net-
work. It uses several inner node-disjoint aggregation

trees to utilise redundant aggregation paths to com-
pare the outcome of the aggregation and uses hash
trees to be able to determine attackers.

Due to its efficient cryptographic operations, Ac-
countant’s additional messaging overhead is com-
pensated by the lower computational power required
to perform. Accountant does only need to initiate the
second phase of identification, if an attack has been
recognised, lowering its output of messages and re-
quired work in the normal case.

Future work will investigate the reduction of the
number of required trees, so that the overall network
footprint can be reduced.

REFERENCES

Bertoni, G., Daemen, J., Peeters, M., and Assche, G. V.
(2009). The road from panama to keccak via radiog-
atún. In Handschuh, H., Lucks, S., Preneel, B., and
Rogaway, P., editors, Symmetric Cryptography, 11.01.
- 16.01.2009, volume 09031 of Dagstuhl Seminar
Proceedings. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, Germany.

Boneh, D., Gentry, C., Lynn, B., and Shacham, H. (2003).
Aggregate and verifiably encrypted signatures from
bilinear maps. In Biham, E., editor, Advances in
Cryptology — EUROCRYPT 2003, pages 416–432,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Bornholdt, H., Jost, D., Kisters, P., Rottleuthner, M., Bade,
D., Lamersdorf, W., Schmidt, T. C., and Fischer, M.
(2019). SANE: Smart networks for urban citizen
participation. In Proceedings of the IEEE 26th In-
ternational Conference on Telecommunications (ICT
2019).

Brinkmeier, M., Schäfer, G., and Strufe, T. (2009). Optim-
ally dos resistant p2p topologies for live multimedia
streaming. IEEE Transactions on Parallel and Dis-
tributed Systems, 20(6):831–844.

Chen, C.-M., Lin, Y.-H., Lin, Y.-C., and Sun, H.-M.
(2012). RCDA: Recoverable concealed data aggreg-
ation for data integrity in wireless sensor networks.
IEEE Transactions on Parallel and Distributed Sys-
tems, 23(4):727–734.

Fasolo, E., Rossi, M., Widmer, J., and Zorzi, M. (2007).
In-network aggregation techniques for wireless sensor
networks: a survey. IEEE Wireless Communications,
14(2):70–87.

Fog, A. (2019). 4. instruction tables. https://www.agner.
org/optimize/instruction_tables.pdf. Ac-
cessed on 2019-12-17.

Gamal, T. E. (1985). A public key cryptosystem and a sig-
nature scheme based on discrete logarithms. IEEE
Trans. Information Theory, 31(4):469–472.

Granlund, T. (2019). Instruction latencies and throughput
for amd and intel x86 processors. https://gmplib.
org/~tege/x86-timing.pdf. Accessed on 2019-
12-17.

He, W., Nguyen, H., Liu, X., Nahrstedt, K., and Abdelza-
her, T. (2008). iPDA: An integrity-protecting private
data aggregation scheme for wireless sensor networks.
In Proceedings - IEEE Military Communications Con-
ference MILCOM.

Kumar, V. and Madria, S. (2013). PIP: Privacy and integ-
rity preserving data aggregation in wireless sensor net-
works. 2013 IEEE 32nd International Symposium on
Reliable Distributed Systems, pages 10–19.

Lamport, L. (2006). Lower bounds for asynchronous con-
sensus. Distributed Computing, 19(2):104–125.

Mahimkar, A. and Rappaport, T. (2004). SecureDAV: a
secure data aggregation and verification protocol for
sensor networks. In IEEE Global Telecommunica-
tions Conference, 2004. GLOBECOM ’04., volume 4,
pages 2175–2179. IEEE.

Merkle, R. C. (1990). A certified digital signature. In Lec-
ture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), volume 435 LNCS, pages
218–238.

Mohamed, N., Al-Jaroodi, J., Jawhar, I., Lazarova-Molnar,
S., and Mahmoud, S. (2017). Smartcityware: a
service-oriented middleware for cloud and fog en-
abled smart city services. Ieee Access, pages 17576–
17588.

Parakh, A. and Kak, S. C. (2010). Recursive secret sharing
for distributed storage and information hiding. CoRR,
abs/1001.3331.

Villanueva, F. J., Santofimia, M. J., Villa, D., Barba, J., and
Lopez, J. C. (2013). Civitas: The smart city middle-
ware, from sensors to big data. In IMIS, 2013 Seventh
int. conf. on, pages 445–450. IEEE.

