
Dangers and Prevalence of Unprotected Web Fonts
Tobias Mueller∗, Daniel Klotzsche∗, Dominik Herrmann‡ and Hannes Federrath∗

∗University of Hamburg, Germany
Email: {mueller,3klotzsc,federrath}@informatik.uni-hamburg.de

‡University of Bamberg, Germany
Email: dominik.herrmann@uni-bamberg.de

Abstract—Most Web sites rely on resources hosted by third
parties such as CDNs. Third parties may be compromised or
coerced into misbehaving, e.g. delivering a malicious script or
stylesheet. Unexpected changes to resources hosted by third
parties can be detected with the Subresource Integrity (SRI)
mechanism. The focus of SRI is on scripts and stylesheets. Web
fonts cannot be secured with that mechanism under all circum-
stances. The first contribution of this paper is to evaluates the
potential for attacks using malicious fonts. With an instrumented
browser we find that (1) more than 95% of the top 50,000 Web
sites of the Tranco top list rely on resources hosted by third
parties and that (2) only a small fraction employs SRI. Moreover,
we find that more than 60% of the sites in our sample use fonts
hosted by third parties, most of which are being served by Google.
The second contribution of the paper is a proof of concept of a
malicious font as well as a tool for automatically generating such
a font, which targets security-conscious users who are used to
verifying cryptographic fingerprints. Software vendors publish
such fingerprints along with their software packages to allow
users to verify their integrity. Due to incomplete SRI support
for Web fonts, a third party could force a browser to load
our malicious font. The font targets a particular cryptographic
fingerprint and renders it as a desired different fingerprint.
This allows attackers to fool users into believing that they
download a genuine software package although they are actually
downloading a maliciously modified version. Finally, we propose
countermeasures that could be deployed to protect the integrity
of Web fonts.

Index Terms—fonts, web, integrity, attack surface

I. INTRODUCTION

The Web is a very popular application on the Internet and
part of its success arguably stems from the fact that it allows
loading and embedding resources from third parties. In fact,
studies have shown that this behaviour is common practise [1],
[2] and that a browser needs to establish about 20 separate TLS
connections to different host names in order to render a Web
page [2], [3].

Loading resources from a third party’s host, however, bears
risks [4], [5]. Not only can a third party memorise a user’s visit
and create tracking profiles [3], [6]–[8], it can also discriminate
users and alter the content of the requested resource based on
the (real-world or pseudonymous) identity of a user. While
this may be desirable for certain use cases, such as displaying
random images of kittens, it is problematic when it affects
security-sensitive content.

In order to protect against the threat of a third party alter-
ing content, Web browsers implement Subresource Integrity
(SRI) [9] which is a mechanism to load content only if it

hashes to an expected value. With this mechanism, Web site
providers can instruct browsers to reject the contents of a script
(e.g. jQuery or Bootstrap) or stylesheet if it has been altered
without notifying the Web site provider.

SRI has been standardised with scripts and stylesheets in
mind that are included using the link and script HTML
tags. However, it has been overlooked to protect Web fonts
that are included within a stylesheet. Apparently, the attack
potential of Web fonts has been deemed insignificant.

With this paper we want to raise attention for this gap.
To the best of our knowledge, we are the first to concretely
demonstrate and quantify the security implications of mali-
cious fonts. To this end, we make the following contributions:

• We estimate the amount of vulnerable Web sites by
measuring the prevalence of SRI on and the use of
embedded third-party fonts on popular Web sites,

• we present a proof-of-concept attack that exploits the
capabilities malicious Web fonts, and

• we discuss countermeasures that load fonts with integrity
protection.

II. BACKGROUND

This section briefly describes our attack scenario as well as
techniques to load a custom font face on a Web site. Finally,
we describe the capabilities of Web fonts that will be exploited
for our attack.

A. Attacker model

In our scenario, we assume that Web site owners have best
intentions. They create a Web site which loads a font from
a third party, such as Google Fonts. This connection may or
may not be established via TLS [10]. We assume that the third
party hosting the font is compromised or coerced into serving
a malicious font, i.e. it is able to discriminate requests from
the site owner and requests from a targeted user to serve either
a benign or a malicious version of the requested font. Such
discrimination is commonplace on today’s Web [6], [8], [11],
[12]. The integrity protection offered by TLS cannot detect
such modifications.

Our assumed victim is a security-conscious user who aims
to obtain security-sensitive information from the site. Without
loss of generality we assume that the user is interested in the
value of a cryptographic fingerprint of an OpenPGP certificate
or the hash value of a file to be downloaded from the (first-
party) Web server. For example, the download page of the

“Signal” messenger app contains the following hint (version
4.39.4, fingerprints shortened):

You can verify the signing certificate on the APK
matches this SHA256 fingerprint:
29:F3:4E:5F:27:F2:11:B4:24:BC...
EA:FB:A2:DA:35:AF:35:C1:64:16...

The attacker’s goal is to make the browser render the
fingerprint differently, i.e. to show a different fingerprint,
without modifying the source code of the Web site the user
visits.

B. Styling Web site elements

Styling an element with a custom font has been introduced
with HTML 3 via a font tag (fig. 1). The font tag, which
has been deprecated with HTML 5 in 2014 [13], required fonts
to be installed on a user’s system. Dynamically loading a font
from a server on the Internet was introduced with CSS3 in
2013. A contemporary way to use a font from a third party
host is provided in fig. 2. This snippet replaces the font tag
shown in fig. 1. Note, however, that not including a CSS file
instead of a font is very common.

C. Subresource Integrity

Web sites commonly rely on third-party services offered by,
e.g. Google, Cloudflare, or Akamai, to host and serve content.
The prevalence of such Content Delivery Networks (CDNs)
is very strong [2]. A Web site developer wanting to protect
its users from a compromised CDN can make use of the SRI
mechanism when embedding the remote resource (fig. 3).

To this end the developer includes the hash of the intended
resource when defining the use of a resource. When the
browser has retrieved a linked resource it then hashes its
content and checks whether the hash matches the developer’s
expectation denoted in the integrity attribute. SRI’s in-
tegrity attribute can only be added to link and script
HTML tags but not to CSS definitions. As a result. Web fonts,
which are defined in CSS, cannot be protected with SRI.

In experiments, we also tried to trick browsers into per-
forming SRI on fonts by including them with the link tag in
addition to the CSS definition. This technique can actually be

<p>
This paragraph has had its font...

</p>

Fig. 1. A HTML2 snippet showing how to use a font (limited to the fonts
installed on user’s machine)

@font-face {
font-family: Gentium;
src: url(http://xmpl.com/Gentium.woff);

}

p { font-family: Gentium, serif; }

Fig. 2. A CSS file to use a font from a remote host rather than the user’s
machine

used for pre-loading of fonts. However, browsers ignore the
integrity attribute in this case.

D. Capabilities of Fonts

When a computer renders text on the screen it maps the
characters of the text to graphical representations (glyphs) that
are defined in the font’s file. Before glyphs are rendered on
the screen they are “shaped”. For example, the three glyphs
ffi are replaced with a single and more pleasant ligature: ffi.

Arguably the most prevalent standard for fonts is Open-
Type [14]. It supports various typesetting features which can
be expressed via a text file in the corresponding “feature file
(fea) format” [15]. Of particular interest for us is the possibility
to define ligatures which coalesce two (or more) glyphs into
one. Additionally, it allows to expand one glyph into multiple
other glyphs. This feature can be used by a font to convert
a certain character, e.g. one with tréma (such as ä), into two
or more glyphs, e.g. the a and the tréma. Other features of
fonts, such as kerning, will then move the tréma back over the
other glyph. Among the features of OpenType fonts is also the
contextual replacement which will only replace glyphs if they
appear before or after certain other glyphs. It has been reported
that these features make fonts Turing complete [16]. For the
Turing completeness to work in practice, however, hard coded
limits in the font interpreter need to be lifted.

To the best of our knowledge the closest work to ours is
a font named SansBullshitSans1. That font coerced several
glyphs into a new glyph, e.g. “cloud” into a glyph that appears
as “bullshit”. Note that SansBullshitSans replaces multiple
glyphs with one specifically crafted glyph which has the
appearance of several other glyphs rather than actually using
several other glyphs of the font.

III. CRAFTING A MALICIOUS FONT

This section describes how to craft a malicious font based
on our proof-of-concept font SansFingerprintSans.

The objective for creating a fingerprint hiding font is to
(1) replace the target fingerprint with a different glyph and
then (2) expand that glyph back to a series a characters which
represent a different fingerprint.

We created our font as follows: We crafted two ligature
tables (cf. section II-D). The first table coalesces the sequence
of 64 characters (for SHA256, 40 for SHA1) into one, spe-
cially crafted, glyph, e.g. the unicode codepoint U+0600. The
second table expands that newly defined glyph into a series of
glyphs which represent the desired fingerprint (fig. 4).

1http://www.sansbullshitsans.com/

<script src="https://example.com/lib.js"
integrity="sha384-oqd[...]]GYwC"
crossorigin="anonymous"></script>

Fig. 3. A script defined with the SRI hash of the expected content. Clients can
use this hash to reject the loaded content if it does not hash to the same value.
The value in the integrity attribute contains a base64-encoded SHA384
hash (shortened to fit on the page).

lookup ligaStandardLigatureslookup3 {
lookupflag 0;

sub \zero \five \six \four \four \six
\F \zero \seven \seven \three \two
[...] by \uniE600;

} ligaStandardLigatureslookup3;

lookup ligaStandardLigatureslookup4 {
lookupflag 0;

sub \uniE600 by \F \two \eight \nine
\F \seven \B \A \seven [...] ;

} ligaStandardLigatureslookup4;

Fig. 4. The behaviour of the malicious font in Feature File Syntax. It replaces
a certain series of characters, e.g. a cryptographic fingerprint, with a series of
other characters. The fingerprints have been shortened for brevity.

To automate this process we built a tool that generates a
malicious font for pairs of fingerprints. It takes the fingerprint
to be attacked as well as the fingerprint which should appear
instead as arguments and returns a TrueType font file. The
runtime is in the order of a few milliseconds, which makes it
possible to adapt the attack dynamically in real time.

The resulting font and the generation tool have been pub-
lished on https://github.com/muelli/SansFingerprintSans.

To assess the relevance of our finding we assess the attack
surface in the next section. To this end we analyse the
prevalence of SRI and embedded fonts.

IV. QUANTIFYING THE ATTACK SURFACE

We start out by describing our approach to finding remote
resource usage and how we assessed the use of SRI.

A. Scanning for Remote Resource Usage

We built a scanner to assess whether a Web site includes
resources from remote hosts and whether the client made use
of SRI for the corresponding requests. Our scanner instru-
ments Chrome using the Devtools protocol2 via a JavaScript
abstraction. We record the HTTP requests while a Web site
is retrieved and wait for the page to be loaded completely.
Then we traverse the Document Object Model (DOM) and
match the observed requests to individual nodes in the DOM.
We check the nodes for an integrity attribute and whether
the browser reported an error while loading the associated
resource. If a resource was loaded successfully and its node
had an integrity attribute, we assume that the resource was
protected with SRI and its content was genuine. If a node had
the integrity attribute and the corresponding resource failed
to load, despite the server having returned a response with
a status code of 200, we assume a failure in SRI to be the
problem.

2https://chromedevtools.github.io/devtools-protocol/

B. Prevalence of SRI on the Web

A study published in June 2018 reported that only 0.7% of
Web sites used SRI to protect resources [17]. However, that
study lacks details such as the type of resource and the identity
of the third parties that serve particular files. Moreover, it
relied on Alexa’s top list, which has been criticised for its
high churn and bias [18]. In contrast, we use the Tranco [18]
top list3 to obtain more robust results.

For scanning 50000 Web sites, our scanner performed
5719188 requests for additional resources. Of all the requested
resources, only 0.3% (5256) were protected with SRI. Of
those SRI protected resources 1.86% (90) failed to load.
Interestingly, in 62.24% (61) cases SRI was absent although
the Content Security Policy (CSP) of the server required it.
In 22.45% (22) cases the hash mismatched and in 3.06% (3)
the hash provided by the developer could not be parsed. The
remaining 4.08% (4) failed because the request timed out. The
SRI protection mechanism was used by 5.71% (2855) of the
50000 Web sites.

The vast majority (69.56%) of the resources loaded via
SRI are scripts. The only other protected type of resource is
stylesheet (30.44%). Moreover, we have observed one Web
site trying to load a font with SRI protection (bugatti.com)
by including an integrity attribute in the link tag. Since
browsers ignore that integrity attribute in this case (cf. sec-
tion II-C), no protection was in place.

The SRI mechanism was used for external resources hosted
on third party hosts in 96.33% (5063) of the cases. Same-
domain resources were protected with SRI in 3.67% (193) of
the cases.

The most often SRI protected resource is the jQuery library,
closely followed by Font Awesome and Bootstrap (table II).
Those make up for well over 50% of all SRI-protected
resources. The hosts serving those resources belong to the
StackPath company group.

Of the top 50000 Web sites, 3.92% made no use of third-
party resources at all. 62.22% loaded a font from a third-party
host. In total, 156862 fonts were loaded. Google is serving the
most fonts with a large margin (table I), serving more than 6.5
times as many fonts as the runner-up.

V. DISCUSSION

In this section we discuss the limitations of our measure-
ment study and propose techniques to protect the integrity of
fonts.

A. Limitations

The scanner presented in section IV-A suffers from a
limitation in the Devtools protocol which does not directly
support providing information about SRI. Because we have
to rely on a message related to the logging subsystem, rather
than the one responsible for making requests, we cannot see
whether the browser has actually performed a verification of
the SRI hash for a loaded resource. Chrome only provides a

3https://tranco-list.eu/list/J9ZY/50000

TABLE I
TOP 10 HOSTS DELIVERING FONTS

Ratio Fonts delivered Hostname

53.21% 83470 fonts.gstatic.com
8.05% 12629 use.typekit.net
5.19% 8141 base64-encoded-string
1.31% 2056 maxcdn.bootstrapcdn.com
1.01% 1588 use.fontawesome.com
0.45% 713 use.typekit.com
0.25% 390 themes.googleusercontent.com
0.21% 330 netdna.bootstrapcdn.com
0.18% 290 js.driftt.com
0.15% 232 pro.fontawesome.com

TABLE II
TOP 10 HOSTS DELIVERING SRI PROTECTED CONTENT

Ratio Count Hostname

19.16% 1007 code.jquery.com
14.82% 779 use.fontawesome.com
13.43% 706 cdnjs.cloudflare.com
12.16% 639 maxcdn.bootstrapcdn.com

9.19% 483 cdn.shopify.com
4.72% 248 stackpath.bootstrapcdn.com
4.01% 211 assets.publishing.service.gov.uk
2.47% 130 cdn.vox-cdn.com
2.44% 128 pro.fontawesome.com
1.92% 101 d10lpsik1i8c69.cloudfront.net

rather generic log entry for a SRI failure instead of a structured
notification in case SRI verification was successful (or failed).
Our scanner would have benefited from the Devtools protocol
explicitly supporting SRI by way of extending the requests
and response structures.

As described we address this challenge by iterating over
the DOM and finding all script and link elements and
check for the existence of an integrity attribute (cf.
section II-C). This, however, makes the scanner susceptible to
time of check, time of use (TOCTOU) deficiencies: A Web
site provider could evade detection of loading unprotected
content by exploiting our measurement gap. To this end, the
server would offer the browser a resource without SRI at
first. Once the resource has been loaded, the server would
modify the HTML source code with a script that adds a
fitting integrity attribute to the element. When our scanner
iterated over the DOM it would then detect an element with
the integrity element (fig. 5). We have found no indicators
for such modifications during our tests.

A second limitation results from the fact that our findings
are based on the front page of Web sites, i.e. we did not
perform a deep crawl. It may be possible that some Web sites
implement SRI only on a subset of their pages. One could
imagine that pages requiring logging in, such as banking or
messaging, have a better protected membership area. A more
thorough assessment that also includes subpages is left as
future work.

B. Solutions

One way of addressing the problem of unprotected fonts is
to allow the integrity attribute for loading fonts. However,
because no dedicated font tag exists in HTML and fonts
can only be loaded via CSS where no concept akin to SRI
exists yet, a similar mechanism could be deployed there. In
fact, several approaches exist. Firstly, the src property of
the font-face CSS rule could take a URL which includes
integrity protection, e.g. sha384:ABCD/https://foo.
Secondly, CSS could be extended with a new integrity
attribute that can be used in conjunction with src. Thirdly,
HTML could be extended to allow loading fonts via the link
tag and respect the integrity tag.

VI. CONCLUSION

We have shown the relevance of integrity protection for
fonts that are hosted on third-party servers on the Web.
A malicious font can render information differently without
breaking existing integrity protection mechanisms. We demon-
strated how to build a font that changes the rendering of
cryptographic fingerprints that are being used by advanced
users to verify the authenticity of software and information.
This allows an attacker to trick a victim into downloading
compromised software. We have also shown that there are
only very few entities that serve the lion’s share of the fonts
used on the most popular Web sites. Given their reach these
entities are enticing targets and it is conceivable that powerful
attackers may try to compromise or coerce these entities into
misbehaving. Finally, we have shown several straightforward
methods to detect malicious fonts. Given the attack surface
the affected Web standards should be extended accordingly.

<head>
<link rel="stylesheet"
href="some.css" /></head>

<body>
<script>
let link = document

.getElementsByTagName('link')[0];
window.onload = () => {
link.setAttribute('integrity',

'sha384-bgOyR[...]Zw1T');
link.setAttribute('crossorigin',

'anonymous');
}
</script></body>

Fig. 5. Code which evades the detection of using unprotected resource due to
a measurement gap in the Devtools protocol which reports only SRI failures
but not SRI successes. This leads to a race in correlating successful requests
and integrity attributes on DOM nodes.

REFERENCES

[1] N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. Van Acker, W. Joosen,
C. Kruegel, F. Piessens, and G. Vigna, “You Are What You Include:
Large-scale Evaluation of Remote Javascript Inclusions,” in Proceed-
ings of the 2012 ACM Conference on Computer and Communications
Security, ser. CCS ’12, New York, NY, USA: ACM, 2012, pp. 736–747.
DOI: 10.1145/2382196.2382274.

[2] M. Ikram, R. Masood, G. Tyson, M. A. Kaafar, N. Loizon, and R.
Ensafi, “The Chain of Implicit Trust: An Analysis of the Web Third-
party Resources Loading,” in The World Wide Web Conference, (San
Francisco, CA, USA), ser. WWW ’19, New York, NY, USA: ACM,
2019, pp. 2851–2857. DOI: 10.1145/3308558.3313521.

[3] E. Sy, C. Burkert, H. Federrath, and M. Fischer, “Tracking Users across
the Web via TLS Session Resumption,” in Proceedings of the 34th
Annual Computer Security Applications Conference on - ACSAC ’18,
San Juan, PR, USA: ACM Press, 2018, pp. 289–299. DOI: 10.1145/
3274694.3274708.

[4] B. Stock, S. Lekies, T. Mueller, P. Spiegel, and M. Johns, “Pre-
cise Client-side Protection against DOM-based Cross-Site Scripting,”
in 23rd USENIX Security Symposium (USENIX Security 14), San
Diego, CA, USA: USENIX Association, Aug. 20, 2014. (visited on
06/25/2014).

[5] D. Kumar, Z. Ma, Z. Durumeric, A. Mirian, J. Mason, J. A. Halderman,
and M. Bailey, “Security Challenges in an Increasingly Tangled Web,”
in Proceedings of the 26th International Conference on World Wide
Web, (Perth, Australia), ser. WWW ’17, Republic and Canton of
Geneva, Switzerland: International World Wide Web Conferences
Steering Committee, 2017, pp. 677–684. DOI: 10 . 1145 / 3038912 .
3052686.

[6] S. Englehardt and A. Narayanan, “Online Tracking: A 1-million-site
Measurement and Analysis,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security - CCS’16,
Vienna, Austria: ACM Press, 2016, pp. 1388–1401, ISBN: 978-1-4503-
4139-4. DOI: 10.1145/2976749.2978313. (visited on 06/05/2019).

[7] T. Mueller, M. Marx, H. Pridoehl, P. Wichmann, and D. Herrmann,
“Sicherheit und Privatheit auf deutschen Hochschulwebseiten: Eine
Analyse mit PrivacyScore,” in Sicherheit in vernetzten Systemen,
Hamburg, Feb. 27, 2018, ISBN: 978-3-7460-8637-8.

[8] J. R. Mayer and J. C. Mitchell, “Third-Party Web Tracking: Policy and
Technology,” in 2012 IEEE Symposium on Security and Privacy, May
2012, pp. 413–427. DOI: 10.1109/SP.2012.47.

[9] D. Akhawe, F. Braun, F. Marier, and J. Weinberger. (Jun. 23, 2016).
Subresource Integrity, [Online]. Available: https://www.w3.org/TR/
SRI/ (visited on 06/05/2019).

[10] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version
1.3,” Request for Comments, no. 8446, p. 160, Aug. 2018. DOI: 10.
17487/RFC8446. [Online]. Available: https://rfc-editor.org/rfc/rfc8446.
txt.

[11] D. Jang, R. Jhala, S. Lerner, and H. Shacham, “An Empirical Study
of Privacy-violating Information Flows in JavaScript Web Applica-
tions,” in Proceedings of the 17th ACM Conference on Computer and
Communications Security, ser. CCS ’10, New York, NY, USA: ACM,
2010, pp. 270–283, ISBN: 978-1-4503-0245-6. DOI: 10.1145/1866307.
1866339. (visited on 11/29/2013).

[12] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G.
Vigna, “Cross-Site Scripting Prevention with Dynamic Data Tainting
and Static Analysis,” in In Proceeding of the Network and Distributed
System Security Symposium (NDSS’07), 2007. DOI: 10.1.1.117.6526.

[13] I. Hickson, R. Berjon, S. Faulkner, T. Leithead, E. D. Navara, T.
O’Connor, and S. Pfeiffer. (Oct. 28, 2014). HTML5: A vocabulary
and associated APIs for HTML and XHTML, [Online]. Available:
https : / / www. w3 . org / TR / 2014 / REC - html5 - 20141028/ (visited on
06/05/2019).

[14] P. Constable, M. Jacobs, and R. McKaughan. (Aug. 15, 2018).
OpenType specification - Typography, [Online]. Available: https : / /
docs . microsoft . com / en - us / typography / opentype / spec/ (visited on
06/18/2019).

[15] Adobe. (Mar. 21, 2019). OpenType Feature File Specification, [On-
line]. Available: http : / / adobe - type - tools . github . io / afdko /
OpenTypeFeatureFileSpecification.html (visited on 06/15/2019).

[16] M. C. Maxfield. (Mar. 7, 2019). Litherum: Addition Font, [Online].
Available: https://litherum.blogspot.com/2019/03/addition- font.html
(visited on 03/18/2019).

[17] R. Shah and K. Patil, “A measurement study of the subresource
integrity mechanism on real-world applications,” International Journal
of Security and Networks, vol. 13, no. 2, p. 129, 2018, ISSN: 1747-
8405, 1747-8413. DOI: 10 . 1504 / IJSN . 2018 . 092474. (visited on
06/05/2019).

[18] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczynski,
and W. Joosen, “Tranco: A Research-Oriented Top Sites Ranking
Hardened Against Manipulation,” in Proceedings 2019 Network and
Distributed System Security Symposium, San Diego, CA: Internet So-
ciety, 2019. DOI: 10.14722/ndss.2019.23386. (visited on 06/05/2019).

