

16th December 2019 International Conference on Information and Communications Security Beijing, China

Context-aware IPv6 Address Hopping

Matthias Marx, Monina Schwarz, Maximilian Blochberger, Frederik Wille, Hannes Federrath

Application Layer

Network Layer

Application Layer

Network Layer

Application Layer

Network Layer

Application Layer

- IPv6 addresses have 128 bit $2^{128} \approx 3.4 \times 10^{38}$
- ISPs assign at least one 64 bit IPv6 prefix to home users 2001:db8:85a3:8a2e::/64 $2^{64} \approx 1.8 \times 10^{19}$
- Only a fraction of these IP addresses are used today
 - One or few IP addresses per device
 - New tracking opportunities arise
 - IPv6 Privacy Extension does not protect against tracking
- We will utilize the large IPv6 address space
 A distinct outbound IPv6 address for each visited website

Address hopping for enhanced privacy

- IPv6 Privacy Extension
 - Temporary, random addresses for outbound connections
 - IP addresses are usually used for one day
- Virtual protocol stack
 - Alter identifiers on all layers: MAC, IPs, ...
- Address Hopping NAT
 - ISP mixes IP addresses of packets sent by customers

Address hopping for enhanced security

- Rotate the addresses of both, sender and receiver
- Moving target defense

Context isolation in web browsers for

- Security
- Privacy
- Robustness and performance

Unlinkability

A third party must not be able to link visitors on different websites to the same user based on the IP address

- **No perceptible influence** on the browsing performance
- Transparent to the user
- Backwards compatible to existing web applications and Internet infrastructure

Browsing with plain Firefox Browser

- All tabs use the same IP address
- The tracker can link activities based on the IP address

Context-aware IPv6 Address Hopping

- We use many IP addresses on a per-destination basis
- The tracker can not link activities based on the IP address

Address Generation

2001:db8:85a3::8a2e:370:7334 interface identifier subnet prefix

- Interface identifiers can be varied easily
- Prefix needs to be varied, too. Otherwise: prefix-based tracking
- The prefix can not be varied easily without changing the infrastructure
 - Prefix Bouquets

ISPs could delegate multiple prefixes to one user

Prefix Sharing

ISPs could delegate the same prefix to multiple users

- **1.** Prevent collicions: ensure IP address uniqueness
- 2. Detect collisions

- Alternative proxy for the Tor Browser
- Makes use of the Tor browser's website isolation feature but the traffic is not routed through Tor

DOI: 10.5281/zenodo.1184149

- Unlinkability
 - Different outbound IP addresses for different websites
 - Prefix is changed to a certain degree only
- **No perceptible influence** on the browsing performance
- Transparent to the user
 - Not interfering with applications
 - Nothing to configure
- Backwards compatible to existing web applications and Internet infrastructure
 - HTTP & WebSocket protocol
 - Third-party authentication services

Evaluation: Performance

Time that is needed to retrieve and render a website

- How can ISPs provide users with multiple and frequently changing IPv6 prefixes?
- Extend the context-aware approach to other applications and the operating system
- How can existing anonymous communication networks such as Tor be made more context-aware?

Conclusion

 We introduced context-aware IPv6 address hopping to prevent IP address-based tracking

A distinct outbound IPv6 address for each visited website

- A prototype has been implemented
- Impact on browsing performance is negligible
- In combination with application-level measures, effective protection against tracking can be achieved

16th December 2019 International Conference on Information and Communications Security Beijing, China

Context-aware IPv6 Address Hopping

Matthias Marx icics@marx.wtf

Slides: https://marx.wtf/2019-12-ICICS.pdf

Website	Fire Mean	$ fox \\ SD $	Proto Mean	type SD	Tor B Mean	rowser SD	3rd-party Resources
google.com	0.43	0.11	0.42	0.06	7.96	4.09	3
youtube.com	1.78	0.68	1.91	0.49	8.79	2.16	10
facebook.com	1.07	0.16	1.23	0.20	9.55	2.27	1
wikipedia.org	0.19	0.10	0.22	0.05	1.76	0.50	0
yahoo.com	0.51	0.25	0.48	0.13	3.88	1.49	1
Alexa Top 10	0.27	0.49	0.28	0.51	2.13	3.32	3
Alexa Top 100	0.30	0.72	0.64	0.39	2.28	4.74	12.26