
State of the Sandbox: Investigating macOS Application Security
Maximilian Blochberger

blochberger@informatik.uni-

hamburg.de

University of Hamburg

Germany

Jakob Rieck

jakobrieck@gmail.com

University of Hamburg

Germany

Christian Burkert

burkert@informatik.uni-hamburg.de

University of Hamburg

Germany

Tobias Mueller

mueller@informatik.uni-hamburg.de

University of Hamburg

Germany

Hannes Federrath

federrath@informatik.uni-

hamburg.de

University of Hamburg

Germany

ABSTRACT
Sandboxing is a way to deliberately restrict applications accessing

resources that they do not need to function properly. Sandboxing

is intended to limit the effect of potential exploits and to mitigate

overreach to personal data. Since June 1, 2012, sandboxing is a

mandatory requirement for apps distributed through the Mac App

Store (MAS). In addition, Apple has made it easier for developers

to specify sandbox entitlements – capabilities that allow the app

to access certain resources. However, sandboxing is still optional

for macOS apps distributed outside Apple’s official app store. This

paper provides two contributions. First, the sandbox mechanism

of macOS is analyzed and a critical sandbox-bypass is identified.

Second, the general adoption of the sandbox mechanism, as well as

app-specific sandbox configurations are evaluated. For that purpose

all 8366 free apps of the MAS, making 25 % of all apps available on

the MAS, as well as 4672 apps retrieved from MacUpdate (MU), a

third-party app store, were analyzed dynamically. The dataset is

over eight times larger than the second biggest study of macOS apps.

It is shown that more than 94 % of apps on the MAS are sandboxed.

However, more than 89% of apps distributed through MU do not

make use of sandboxing, putting users’ data at risk.

CCS CONCEPTS
• Security and privacy → Operating systems security; Soft-
ware security engineering; • Software and its engineering→
Extra-functional properties.

KEYWORDS
sandboxing; capabilities; entitlements; macOS

ACM Reference Format:
Maximilian Blochberger, Jakob Rieck, Christian Burkert, Tobias Mueller,

and Hannes Federrath. 2019. State of the Sandbox: Investigating macOS

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WPES ’19, November 11, 2019, London, United Kingdom
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6830-8/19/11. . . $15.00

https://doi.org/110.1145/3338498.3358654

Application Security. In 18th Workshop on Privacy in the Electronic Society
(WPES ’19), November 11, 2019, London, UK. ACM, New York, NY, USA,

12 pages. https://doi.org/110.1145/3338498.3358654

1 INTRODUCTION
In an effort to protect the privacy of its millions of customers,

Apple has over time added capability restrictions to apps that are

distributed via their official App Store for iOS and macOS. On iOS,

these restrictions are mandatory, as the App Store is the sole option

to install apps. On macOS however, apps can still be installed from

third-party sources, where such restrictions might not be enforced.

Nonetheless, macOS apps and updates that are distributed through

the App Store are checked by Apple for compliance with their

submission policy [4]. Since there are millions of apps available

in the App Store, mostly for iOS, app review is only feasible by

automation. Previous work has shown that static analysis employed

by Apple is not without error [18, 56], allowing attackers to publish

non-compliant apps. Kurtz [33] has shown that Apple selectively

performs dynamic analysis to mitigate this risk.

One restriction employed by Apple is sandboxing, a well-known

and established mitigation technique that restricts apps from access-

ing resources not required for their functionality, thus supporting

the principle of least privilege.

In this paper, we analyze whether Apple’s sandboxing restriction

is effective with respect to macOS, where it is still an optional

security feature in contrast to iOS. For that purpose, we surveyed

apps obtained from the MAS as well as from MU, a third-party

app store. Compared to the next most comprehensive app study

on macOS [61], our evaluation considers eight times as many apps

and analyzes more than 25 % of all apps available on the MAS. We

found that 89 % of apps on the third-party store are not sandboxed,

which indicates that sandboxing is rarely employed voluntarily.

In addition, we investigated app-specific sandbox configurations,

distribution of entitlements, and privilege separation. Our results

indicate further that developers choose entitlements sensibly once

their app is restricted by a sandbox. We provide details about a

critical vulnerability that was discovered while evaluating the apps

from our dataset. The vulnerability has already been addressed,

thus improving the security of millions of systems worldwide.

The remainder of the paper is structured as follows: First, we

provide necessary background on macOS’ sandboxing internals.

Session 5: Cybersecurity WPES ’19, November 11, 2019, London, United Kingdom

150

https://doi.org/110.1145/3338498.3358654
https://doi.org/110.1145/3338498.3358654

Second, we present related work on the topic, before we explain

our methodology of obtaining the apps and extracting relevant

metadata. Next, we evaluate the sandbox adoption among these

apps and discuss our findings. Finally, we outline areas for future

work based on security and privacy improvements made by macOS

Mojave and conclude the paper.

2 FOUNDATIONS: THE APP SANDBOX
In the context of software security, sandboxing refers to the isolation
of apps by restricting their access to system resources. This limits

the potential damage that apps – even when compromised – can

inflict on the system [28].

Sandboxing on macOS was first introduced with Mac OS X Leop-

ard (10.5) in 2007 as an optional security feature, which initially

could be bypassed easily [46]. Originally configurable only using

an undocumented Scheme-like language dubbed Sandbox Profile

Language (SBPL), the feature was almost exclusively used by Apple

for system processes. Then in 2011, with Mac OS X Lion (10.7),

Apple introduced the App Sandbox as a usable interface to the

sandbox, intended to be employed by third-party apps. Essential

to the App Sandbox is the notion of containers, which add dedi-

cated home directories for each app. Container data is located at

~/Library/Containers/<bundleId>. Apps can only access the

Data sub-directory of the container, which acts as a dedicated home

directory. Since 2012, sandboxing is mandated for apps offered via

the MAS [26]. For apps distributed outside the store, it remains an

optional security feature to this day (April 2019). Though nowadays

an important component used to secure both system services and

third-party apps, the sandboxing implementation remains closed

source and is not documented on a technical level.

The remainder of this section provides background information

about the App Sandbox on macOS. First, we investigate the kinds

of threats it is supposed to defend against and then describe how

the system fits into the broader development and runtime lifecycles

of apps.

2.1 Threat Model
An official threat model for the App Sandbox is not provided by

Apple. Here, we instead deduce our own informal model from

available marketing materials [40], developer documentation [3, 5],

and sandbox-related patents [16, 30, 31, 32, 48].

Public marketing material states that sandboxing keeps “your

computer and your information safe” from apps misbehaving due to

inadvertent programming defects (“bugs”) and even from apps that

are “compromised by malicious software” [40]. Developer documen-

tation echoes the same sentiments: the App Sandbox is “designed to

contain damage to the system and the user’s data if an app becomes

compromised” [5]. Intentionally malicious software on the other

hand is explicitly excluded from the threat model [3]. There is no

practical difference between intentionally malicious apps and apps

that become compromised, as both result in malicious code being

executed. This seeming contradiction therefore can be interpreted

as an admission that sandboxing in itself cannot stop malicious

apps from abusing their officially granted privileges. As an example,

a malicious instant messenger allowed to access a user’s contact

database can silently upload and steal this information without

the user ever knowing. Sandboxing however should confine even

intentionally malicious software to their (hopefully) limited capa-

bilities. This interpretation is consistent with Apple’s patents on

the topic, which motivate the need for sandboxing by stating that

a “program may be a malicious program that is developed to in-

tentionally cause damages” and that by using sandboxing, “such

damages can be greatly reduced” [31].

2.2 Sandbox Lifecycle
This section covers three key aspects of the App Sandbox: Con-

figuration, Initialization, and Enforcement. Sandbox configuration

describes the process by which sandboxing is enabled and config-

ured during the development phase of an app. During an app’s

runtime, the sandbox is first initialized. Whenever an app then

requests resources protected by sandboxing, the operating system

verifies that the app is allowed to perform the requested operation.

2.2.1 Configuration. The App Sandbox is enabled and configured

via entitlements, which confer specific resources and capabilities to

programs. Entitlements are specified as key-value pairs. Strings are

used as keys to identify a capability. Values can be used to further

configure each entitlement and can have various types – boolean

ones in the simplest case.

To satisfy the mandatory sandbox requirement for submissions

to the MAS, developers enable the Sandbox entitlement: com.apple.
security.app-sandbox. The App Sandbox is enabled by default

for apps created with Xcode, Apple’s IDE. Sandboxed apps are

then constrained in their execution and for example cannot ac-

cess a user’s files, microphone, or the camera. Most apps can-

not perform their functions in such a constrained environment.

Therefore, developers can specify additional entitlements in or-

der to regain the capability to access specific resources: for exam-

ple, enabling the com.apple.security.device.microphone en-

titlement allows access to the microphone, while adding the com.
apple.security.network.client entitlement grants network ac-

cess. In total, roughly 50 such sandbox-related entitlements are

documented [6, 9]. Entitlements are embedded as a property list in

the app’s executable and their integrity is protected by the app’s

code signature.

Since only relatively few entitlements are available and their

configurability is limited, they offer a high-level and easy to use, al-

beit rather inflexible interface to the sandboxing mechanism. They

are the only official way to configure sandboxing on macOS. Enti-

tlements on iOS are different, hence a direct comparison would not

make sense.

Prior to their release on the MAS, apps go through App Review,

where they are analyzed statically, as well as dynamically [33]. App

Review looks at an app’s entitlements. If it is unclear why certain

entitlements are needed, the developer might need to provide a

written explanation. Apple reserves the right to reject app submis-

sions if they consider themmalicious or overreaching in their usage

of certain entitlements [3].

2.2.2 Initialization. On macOS, all apps start out unsandboxed and

may become sandboxed only later. Early in the startup process, the

Session 5: Cybersecurity WPES ’19, November 11, 2019, London, United Kingdom

151

dynamic linker checks whether the app has the sandbox entitle-

ment enabled. If enabled, libsandbox1 is invoked and extracts the

app’s embedded entitlements to compile the final sandboxing pro-

file. This profile is cached and used directly on subsequent launches,

alleviating the need to compile it multiple times. With the compiled

profile obtained in the previous step, the dynamic linker then in-

vokes a system call to initialize the sandbox before handing over

control to the app code, i. e., to its main() function or to shared library

constructors.

Since sandboxing is normally initialized before transferring con-

trol to third-party code, it should protect against malicious app

code. Note however that the dynamic linker runs in the context of

the app itself. If sandbox initialization fails for any reason or if it is

possible for app code to run before the initialization is complete,

all safeguards provided by the App Sandbox are rendered ineffec-

tive. In contrast to macOS, the sandbox on iOS is enforced by the

kernel. Here, apps without a container – which is not created for

unsandboxed processes – will be terminated [34].

2.2.3 Enforcement. During normal operation, apps call on the op-

erating system to perform fundamental actions on its behalf such

as opening files, sending or receiving network packets, or com-

municating with other software. In a sandboxed environment, the

operating system needs to ensure the caller is allowed to perform

requested actions. To do this, macOS’s kernel calls out to the sand-

box kernel extension
2
, which uses the compiled sandbox profile

installed during app initialization to decide whether to allow the

request. The requested resource or an error code is then returned

to the app, respectively [14].

3 RELATEDWORK
Maass et al. [39], Schreuders et al. [49], and Shu et al. [50] provide

structured overviews of sandboxing mechanisms in general. Re-

lated work on the App Sandbox, Apple’s App Review process, and

permissions is explained in detail below.

App Sandbox. In 2011, Blazakis [14] detailed the early implemen-

tation of the sandbox on macOS and released a set of useful tools

for security researchers. In the same year, Vilaça [55] released

reverse-engineered documentation of the underlying sandbox con-

figuration language SBPL. It remains the only publicly available,

although outdated, documentation to date. Sandbox configurations

are compiled into an opaque binary format. A number of works,

most recently Deaconescu et al. [17] and Esser [22], have investi-

gated and attempted to decompile the binary format used on iOS.

Deshotels et al. [19, 20] analyze semantic flaws in sandbox profiles,

which weaken the security provided by default sandbox profiles,

and might be used as gadgets in exploit chains. Edge and O’Donnell

[21] provide practical examples that show how custom sandbox

profiles can be used to harden apps. Levin [34, 35, 36] and Miller

et al. [45] offer insights into the inner workings of macOS and iOS,

including implementation details of the sandboxing mechanism.

In 2012, Swami [53] presented a practical attack that disabled

sandboxing for apps at runtime. The attack made use of pre-loading

a dynamic library, which in turn replaces a symbol required for

1/usr/lib/libsandbox.dylib
2/System/Library/Extensions/Sandbox.kext

initializing the sandbox. The attack is prevented by System Integrity

Protection (SIP) on current versions of macOS.

App Review. Deng et al. [18], Kurtz [33], and Wang et al. [56] inves-

tigate Apple’s App Review process and present flaws that lead to

malicious apps being accepted into the MAS. We discuss a vulnera-

bility in Section 5.4, which also passed the review process.

Permissions. Android or iOS permissions are quite similar to enti-

tlements. They both are used to protect users’ private information.

Nowadays most permissions are runtime permissions that ask the

user for consent before accessing a resource. Install-time permissions
are functionally equivalent to entitlements. The only difference is

that permissions are displayed to the user before installing the

app. Acar et al. [1] provide a structured overview outlining the

field of permission research for Android. Liu et al. [37] present a

recommendation system for privacy preferences based on users’

permission choices per category amongst other things. Recom-

mendations could take the expected permissions per category into

account, just as we have analyzed for entitlements in Section 5.2.

Further work in the field is used to compare our results to find-

ings already scrutinized [15, 23, 59] or to put our perspective in

context [24, 27, 60, 62].

4 METHODOLOGY
In this section, we describe the method used to gather macOS apps,

followed by the extraction of features regarding sandboxing and

version metadata.

4.1 Application Crawling
In this initial step, we download, install and extract features from

as many macOS apps as were available on two different sources:

First, the MAS, Apple’s official app store which is an integral part

of macOS, and second, MU, a third-party app store. Note that down-

loading the apps is necessary because the app-specific sandbox

configuration is not available via any publicly available metadata,

but has to be read from the downloaded app. In the following, we

describe the crawling process for both sources.

4.1.1 Mac App Store (MAS). The MAS is only available on macOS

and offers no way of comprehensively listing all available apps.

Apple’s Enterprise Partner Feed [8] would likely provide the listing

functionality, but is not available to researchers. We instead make

use of the Mac App Store Preview page, which lists available apps

by genre and can be viewed with a web browser [11]. Utilizing

the web interface, we developed a custom metadata crawler, which

periodically scans the store for new apps. For each listed app, we

query the iTunes Search API [10] to obtain its full metadata. Due

to rate-limiting, each crawl takes approximately three hours to

complete. Note that purchasing, downloading, and installing apps

is only possible using the official desktop client app. Therefore, we

utilized a modified version of the mas command line utility [44]

to automatically purchase and install detected apps. Note that free

apps need to be purchased as well, i. e., tied to the user’s Apple ID

(user account). We also use this utility to check for updates, because

the official MAS app becomes unresponsive if too many apps are

installed and shows at most 200 available updates.

Session 5: Cybersecurity WPES ’19, November 11, 2019, London, United Kingdom

152

The crawling was performed between November 2017 and Sep-

tember 2018. In that period, we scanned the MAS daily and down-

loaded all free apps and subsequent updates thereof. Due to region-

locking, only apps available to the German market could be down-

loaded. The resulting dataset consists of 8366 apps with a total of

15 832 versions. As of January 15, 2019, this also includes 518 paid

apps that had been free sometime during our crawl, probably due to

promotional sales. Note that we were not able to obtain historic app

versions that predate the version at the time of the app purchase.

As a consequence, versions of temporarily free apps might not be

represented throughout the whole crawling period. In addition,

updates that were quickly superseded might have been missed, as

we crawled once a day. Some app versions were uploaded as a sepa-

rate app, thus interrupting the traceable version history. Uploading

separate apps is a known technique to allow paid upgrades, which

are otherwise not supported. We used natural sort order to create

a reproducible version history, although it might not reflect the

actual order of release. Out of a random sample of 250 apps only

one app did change the version format in between releases.

We believe that we were able to obtain a close to complete list

of free macOS apps available on the MAS. This is supported by the

fact that the total number of apps found by our scanner exceeds

the number of apps reported by AppShopper [13].

4.1.2 MacUpdate (MU). In addition to MAS, we also obtained apps

listed on MU [41], a website offering downloads for many macOS

apps. In contrast to MAS, MU apps are not required to be sandboxed.

During our crawl, we detected 37 238 apps and attempted to

download the latest available version per app. Most of them had to

be filtered out, due to non-downloadable or invalid URLs, corrupted

or otherwise unreadable files, or because the apps were outdated

and not supported by modern versions of macOS, so called Classic
apps. This resulted in 6164 downloaded apps. Out of these apps,

1492 were not compatible with our test system and could not be

executed. Thus, a total of 4672 compatible apps could be obtained

from MU.

Note that the crawling of MU was performed in September 2018.

In contrast to the MAS, we limited crawling to a single pass through

and did not repeatedly scan for new apps or version updates. This

is due to the fact that apps’ bundle IDs, which are curated by Apple

for applications with valid code-signatures, cannot be reliably used

as app identifiers outside of the MAS. Therefore, there is no reliable

way to detect different versions of the same app.

4.2 Feature Extraction
We extracted sandbox configurations and additional metadata for

each obtained app. In a first step, we statically analyzed the apps and

extracted (i) entitlements from the binaries of the app, and (ii) app

categories from the information property list (Info.plist) of the
app. The same extraction has been performed for each XPC helper

that is part of the app. In case of MAS apps, the following additional

metadata was extracted using the iTunes Store API on September

19, 2018: (iii) version release dates, and (iv) version ratings. In a

second step, we conducted a dynamic feature extraction to verify if

sandboxing is indeed active in the running app. Since the sandbox

is initialized during app startup, we launched each app, waited for

about 30 seconds like Kurtz [33] to allow initialization routines

// Apple private API declares sandbox_check, which is implemented
// in /usr/ lib/ system/ libsystem_sandbox.dylib.
int sandbox_check(pid_t pid, const char *operation, int type, ...);

// This can be used to determine if a process pid is sandboxed.
int process_is_sandboxed(pid_t pid) {
return sandbox_check(pid, NULL, 0);

}

Listing 1: C code that determines whether a process is sand-
boxed.

to finish, and then asked the operating system whether the app is

sandboxed, as depicted in Listing 1.

5 EVALUATION OF SANDBOX ADOPTION
In this section, we evaluate the sandbox adoption based on the data

extracted from the crawled macOS apps. First, we investigate the

general adoption of sandboxing and contrast the findings between

different versions of an app as well as between the two sources

MAS and MU. Second, we evaluate app-specific sandbox configura-

tions. Third, we investigate whether privilege separation is used as

intended. Finally, we describe a sandbox bypass vulnerability.

Note that we did not investigate differences between free and

paid apps, as related work shows that such differences are negligi-

ble [38, 43, 54, 58].

5.1 Sandbox Adoption in General
For the purposes of this evaluation, we consider an app as sand-

boxed if the sandbox entitlement is included in its binary and en-

abled, and dynamic analysis showed that sandboxing is indeed

active during runtime.

8366

4672

7825

53
5

51
1

4150

sandboxed

unsandboxed

sandboxed unsandboxed

MAS
MU

Figure 1: Comparison of MAS and MU apps and their sand-
box status. SixMAS and elevenMUappswere not sandboxed
during runtime despite having the sandbox entitlement.

5.1.1 Mac App Store (MAS). As depicted in Figure 1, 7825 (93.53 %)

out of 8366 apps distributed through the MAS were sandboxed.

535 (6.39 %) apps were not sandboxed. Six apps did contain the

Session 5: Cybersecurity WPES ’19, November 11, 2019, London, United Kingdom

153

sandbox entitlement but were not sandboxed during runtime, a

behavior which we investigate in Section 5.4. For 7818 (93.45 %)

apps, all collected versions were sandboxed, whereas 539 (6.44 %)

apps had no sandboxed version. Only nine apps had both sandboxed

and unsandboxed versions. Almost all of the unsandboxed apps

were released before sandboxing became mandatory as depicted in

Figure 2.

2011-06
2011-12

2012-06
2012-12

2013-06
2013-12

2014-06
2014-12

2015-06
2015-12

2016-06
2016-12

2017-06
2017-12

2018-06

0

100

200

300

400

#
un

sa
nd

bo
xe

d
ap

ps

initial release
last update

Figure 2: Cumulative distribution of MAS apps’ initial re-
leases and their last updates, starting from the inception of
the MAS until September 2018. The red line marks the time
fromwhich onApple hasmandated sandboxing on theMAS.

5.1.2 MacUpdate (MU). In case of MU, 511 (10.94 %) out of 4672

apps were sandboxed, whereas 4150 (88.83 %) apps were not sand-

boxed. Eleven of the unsandboxed apps contained the sandbox

entitlement, see Section 5.4 for details.

5.1.3 Common Applications. Based on the app bundle identifiers,

173 apps (1.29 % of all apps) were contained in both datasets. Only

the latest collected versions were taken into account. Out of these

apps, 53 (30.64 %) apps were sandboxed for both sources. For 94

(54.34 %) apps, only theMAS variant was sandboxed. The remaining

26 apps were not sandboxed for both sources.

5.1.4 Discussion. Effectively all newly releasedMAS apps are sand-

boxed, while the majority of MU apps are not. The unsandboxed

MAS apps were released before sandboxing became mandatory

(legacy apps). Since App Review is performed for app submissions,

App Store restrictions usually are not applied to existing apps but

only to new apps and updates. Updates to legacy apps without

adopting current restrictions seem to be tolerated, as can be seen in

Figure 2. Six unsandboxed applications were released in 2017. All

of them were affected by a bug, for which details are described in

Section 5.4.

While sandbox adoption of MAS apps is high, future work should

identify and address reasons for the low adoption of the sandboxing

mechanism of apps distributed outside of the MAS.

We were surprised by the low number of apps contained in the

intersection of both datasets, which might be due to our simple bun-

dle identifier matching strategy. Since about two thirds of the apps

contained in the intersection were sandboxed in the MAS but not

in MU, it might be worth investigating whether the unsandboxed

variants are outdated or whether they contain additional features

that require more privileges. The latter case might point out that

Apple’s restrictions are too prohibitive for some use-cases.

5.2 Entitlements
For the evaluation of particular entitlements, only the most recent

version of each app was included. As entitlements are only en-

forced if the app is sandboxed, only sandboxed apps were included.

For simplification, we only include entitlements that can be easily

configured by developers in the App Sandbox section of the app’s

capabilities configuration in Xcode (see Table A.1 for details), ex-

cept for the sections Temporary Exception Entitlements and Private
Entitlements. Entitlements that add the capability of accessing files

or folders were grouped together, regardless of whether they are

set to Read Only or Read/Write.

5.2.1 Distribution. As can be seen in Table 1, 5493 (65.88 %) apps

contain the Client and 3787 (45.42 %) apps contain the User Selected
Files entitlements. The Client entitlement allows apps to access

resources over the Internet or other network connections. Felt et al.

[23] have shown that 62 % of Android apps crawled in October 2010,

use the INTERNET permission, which coincides with our results.

The User Selected Files entitlement enables a mechanism called

Powerbox [5, 49], which presents an Open/Save dialog to the user

running outside the application context. Note that the read-only

variant of that entitlement is enabled by default in Xcode. With

User Selected Files enabled, the app can access files or directories

selected in the file dialog. Note that selecting a directory does not

necessarily grant access to all files within that directory. Some files

need to be selected explicitly, like the Transparency Consent and

Control (TCC) database
3
, or permission protected resources.

5.2.2 Co-occurrences. Next, we analyzed which entitlements co-

occurred with others. For that purpose, apps were grouped by a

base entitlement. For each additional entitlement we calculated the

percentage of apps within that group possessing both entitlements,

which is visualized in Figure 3. Base entitlements used by fewer

than 25 apps were removed, as they are not representative. Ignor-

ing entitlements used by many apps such as Client, User Selected
Files, Print, and Server, co-occurrences above 40 % are Camera and
Microphone, where nearly half of the apps containing one also con-

tain the other. Apps that have the Bluetooth, Calendar, or Movies
Folder entitlement, also have the USB, Contacts, or Pictures Folder
entitlement respectively.

5.2.3 Popularity. Entitlements are not visible to the user. Nonethe-

less, we investigated whether application popularity could be af-

fected by application privileges as has been suggested by related

work on Android permissions [27, 62]. For that purpose, we grouped

MAS apps by their respective rating in the MAS. However, entitle-

ments were distributed evenly between half-star ratings from 0 to

3~/Library/ApplicationSupport/com.apple.TCC/TCC.db

Session 5: Cybersecurity WPES ’19, November 11, 2019, London, United Kingdom

154

Table 1: Overview of sandbox-related entitlements which are used by more than 5 % of all sandboxed apps.
†The entitlements are not in the App Sandbox section in Xcode. While Application Groups are still supported [9], Security-scoped Bookmarks are only mentioned

in deprecated documentation [6].

Entitlement MAS MU All
% # % # %

Client 5104 65.21 % 389 76.13 % 5493 65.88 %

User Selected Files (Read/Write) 3371 43.07 % 416 81.41 % 3787 45.42 %

Print 1001 12.79 % 164 32.09 % 1165 13.97 %

Server 1007 12.87 % 75 14.68 % 1082 12.98 %

Security-scoped Bookmarks
†

723 9.24 % 159 31.12 % 882 10.58 %

Application Groups
†

624 7.97 % 52 10.18 % 676 8.11 %

User Selected Files (Read Only) 615 7.86 % 19 3.72 % 634 7.60 %

Downloads (Read/Write) 420 5.37 % 38 7.44 % 458 5.49 %

Microphone 402 5.14 % 25 4.89 % 427 5.12 %

Server
Client

Camera

Micro
phone

USB
Printing

Bluetooth

Contacts

Location

Calendar

User Selecte
d Files

Downloads Folder

Pictu
res Folder

Music
Folder

Movies Folder

Server

Client

Camera

Microphone

USB

Printing

Bluetooth

Contacts

Location

Calendar

User Selected Files

Downloads Folder

Pictures Folder

Music Folder

Movies Folder

MAS MU

Figure 3: Percentage of sandboxed apps containing an ad-
ditional entitlement in relation to a base entitlement. Base
entitlements with fewer than 25 apps (Camera, Microphone,
Bluetooth, Location, Calendar, and Movies Folder in MU)
were removed, as they are not representative.

5 stars, indicating that non-visible app privileges gained through

entitlements did not affect users’ rating of the app.

5.2.4 Categories. We grouped apps per MAS category and evalu-

ated, which entitlements were used by apps within that category,

as can be seen in Figure 4. Note that 22 sandboxed apps from MAS

had no category information and were excluded. Ignoring common

entitlements such as Client, User Selected Files, Print, and Server,

nearly 60 % of apps within the Weather category contain the Lo-
cation entitlement. About 25 % of Social Networking apps have the

Microphone and Camera entitlement and access to the Downloads
Folder. Above 20 % of apps in the Music, Photography, or Video cate-
gory have access to theMusic, Pictures, orMovies Folder respectively.
22.33 % of Video apps also have the Microphone entitlement. Apps

from the Games category have the least privileges.

5.2.5 Historical Development. In Figure 5, we looked at which

entitlements got added or removed for different versions of an app.

Prior work analyzed the evolution of permission usage for Android

apps [59] and ad libraries [15] and found that privileges increase

over time. We come to the same conclusion, since more than twice

as many entitlements get added than get removed. Due to the lack of

app versions in the MU dataset, this evaluation was only performed

for MAS apps.

5.2.6 Temporary Exception Entitlements. Temporary exception en-

titlements have a dual use [6] (see Table A.3 for details). On one

hand, they show problems with Apple’s restrictions by apps not be-

ing able to function properly with the given sandboxing mechanism.

On the other hand, they allow an incremental transition for apps to

employ the sandboxing mechanism. The first needs to be addressed

by changes to the sandboxing mechanism and hence the operating

system itself. The latter can be addressed by apps gradually apply-

ing additional restrictions, which is a necessity due to the difficulty

of adding security mechanism to an existing app. Only a few apps

use temporary exception entitlements. The most commonly used

temporary exception allows for scripting and automating of other

apps, and is used by 3.2 % of apps.

5.2.7 Private Entitlements. Private entitlements are not documented

by Apple and developers are not allowed to utilize them. They can

provide elevated sandbox exceptions, such as access to the TCC

database, where users’ decisions for permission requests are stored.

In 2017, Strafach [51] uncovered that the UBER iOS app was granted

such an entitlement. In our dataset, only Apple’s apps use private

entitlements.

Session 5: Cybersecurity WPES ’19, November 11, 2019, London, United Kingdom

155

Server
Client

Camera

Micro
phone

USB
Printing

Contacts

Location

User Selecte
d Files

Downloads Folder

Pictu
res Folder

Music
Folder

Movies Folder

Business

Developer Tools

Education

Entertainment

Finance

Games

Graphics & Design

Health & Fitness

Lifestyle

Medical

Music

News

Photography

Productivity

Reference

Social Networking

Sports

Utilities

Video

Weather

MAS MU

Figure 4: Percentage of entitlements per MAS category. In
addition we excluded the Bluetooth and the Calendar enti-
tlements, as they occurred less than 10 % in each category.
Categories with less than 25 apps (Education, Entertainment,
Finance, Games, Health & Fitness, Lifestyle, Medical, News,
Reference, Social Networking, Sports, Video, and Weather in
MU and Travel in both datasets) were removed as well, as
they are not representative.

Server
Client

Camera

Micro
phone

USB
Printing

Bluetooth

Contacts

Location

Calendar

User Selecte
d Files

Downloads Folder

Pictu
res Folder

Music
Folder

Movies Folder

50

0

50

100

150

200
additions
removals

Figure 5: Entitlements added and removed between versions
of MAS apps.

5.2.8 Discussion. Entitlement co-occurrences as well as entitle-

ments per category look sensible, meaning that we found no no-

ticeable problems. We tried to identify anomalous entitlements in

order to determine over-privileged apps, by clustering entitlements

with respect to their co-occurrences, the app’s categories, and all

applications. However, the dataset was too diverse, so that no sen-

sible results could be obtained. We manually inspected apps with

unique combinations of entitlements and with the most privileges

and found no suspicious configuration. This indicates that once re-

stricted to sandboxing, developers make sensible choices regarding

the privileges an app requires. This hypothesis is supported by Jain

and Lindqvist [29], who have already shown that developers make

sensible choices regarding resource access, if the options presented

to them are easy to use and comprehend.

Our analysis only includes entitlements that have been granted

to apps. Future work should identify whether entitled resources

are actually used by the app or whether they are over-privileged.

5.3 Privilege Separation
Privilege separation is a “generic approach that lets parts of a pro-

cess run with different levels of privilege” [47]. The technique can

be used on top of sandboxing to further reduce the impact of com-

promise by limiting the attack surface to separate app components

(helpers).

On macOS, XPC provides the mechanism for inter-process com-

munication (IPC) and provides an interface for developers to subdi-

vide their app into multiple helper components referred to as XPC

services. Since sandboxed apps cannot start child-processes with

higher privileges, XPC services are started by the operating system.

Each helper has its own sandbox and a sandbox configuration that

is specifically tailored to that helper’s functionality. In contrast to

apps, the App Sandbox is disabled by default for XPC services cre-

ated with Xcode. Apple describes the technology as being one of the

pillars of proper sandboxing and encourages developers to make

extensive use of XPC services for stability and security reasons [7].

We investigated whether XPC helpers have more, less, or the

same privileges as the main app. If a helper has some entitlements

granting privileges the main app does not have and at the same

time lacks entitlements the main app possesses, then the privileges

cannot be compared. We consider these helpers to have mixed

privileges. Table 2 shows that the majority of MAS apps with XPC

helpers use lower privileges for their helpers. Most helpers do not

have the User Selected Files, Client, or Printing entitlements, which

the app has. The majority of MU apps however use helpers that

have more privileges than the app itself; nearly all of these helpers

are not sandboxed at all.

5.3.1 Discussion. Since app components can potentially access

resources to which the app binary is not entitled to, the app can still

gain access to these resources by communicating via IPC. Hence,

the entitlements of the helpers need to be included in the overall

privileges of an app.We re-evaluated co-occurrences and entitlements
per category with respect to the overall privileges of the app and

were not able to find significant differences compared to the findings

presented in Section 5.2 that only made use of the entitlements of

the app binary.

Many XPC helpers outside the MAS are not sandboxed at all.

The usage of sandboxing on the MAS however indicates that Ap-

ple ensures helpers are sandboxed as well. Note that no dynamic

Session 5: Cybersecurity WPES ’19, November 11, 2019, London, United Kingdom

156

Table 2: Comparing privileges of XPC helpers to the privi-
leges of the main app.
†Note that an app is added to all categories for which it has at least one helper.

MAS MU
Apps Helpers Apps Helpers

Same privilege 11 13 4 6

Helper more privileged 4 4 95 199

Helper less privileged 46 94 24 51

Mixed privileges 14 24 11 27

Overall 64
†

135 110
†

283

analysis has been performed for helpers. However, they might be

affected by problems during sandbox initialization as well.

Our analysis only includes helpers that exist inside the app bun-

dle, right after the app was installed (MAS) or extracted (MU). Apps

might prompt the user to install additional helpers. Future work

should investigate how prevalent additional helpers are and how

their privileges compare to the privileges of helpers contained in

app bundles.

5.4 Bypassing the Sandbox
In Section 2.2.2, we discussed that the sandbox is initialized in the

context of the app. We argued already that this can potentially

disable sandbox protection. During the dynamic analysis we per-

formed, six MAS and eleven MU apps were identified that were

not sandboxed at runtime, which we did not expect. After further

investigation, we discovered that a bug in the property list parser

led to the sandbox not being correctly initialized.

xpc_object_t raw_entitlements =

xpc_copy_entitlements_for_pid(getpid());↪→

if (raw_entitlements) {
const void *data = xpc_data_get_bytes_ptr(raw_entitlements);
size_t len = xpc_data_get_length(raw_entitlements);
ctx->entitlements = xpc_create_from_plist(data , len);
xpc_release(raw_entitlements);

}

Listing 2: Reverse-engineered excerpt from the sandbox ini-
tialization process

5.4.1 Vulnerability Description. During initialization of the sand-

box, the libsystem_secinit4 library gets linked into the app con-

text. Amongst other things, it reads and parses the entitlements

from the app’s binary. If the app does not possess entitlements,

the xpc_copy_entitlements_for_pid() function returns NULL, causing

ctx->entitlements not to be populated, as can be seen in Listing 2.

This leads to the sandbox initialization being skipped. For the six

apps retrieved from the MAS, the entitlements started with a Byte

order mark (BOM), i. e., 0xEFBBEF, which indicates that the file is

UTF-8-encoded. A bug within the xpc_create_from_plist() function

caused it to return NULL as well, which in turn had the same effect.

App developers could simply add a BOM at the beginning of their

4/usr/lib/system/libsystem_secinit.dylib

entitlements and bypass the sandbox completely. The issue was

reported to Apple
5
and has been addressed in macOS 10.13.5.

5.4.2 Discussion. The vulnerability affected all six apps from the

MAS. Visual similarities indicate four out of the six affected apps

share substantial code. It is therefore conceivable that they were

built from the same underlying project, which may have included a

modified entitlement file from the start. We therefore assume that

this did not happen with malicious intent.

The eleven apps from MU however did not contain a BOM and

we are still investigating the reason why the sandbox is not being

properly initialized for these apps. In addition, we checked whether

entitlements of XPC helpers did start with a BOM and found none.

The vulnerability is critical, as it can be exploited by malicious

developers without much effort. By simply adding a BOM at the

beginning of their entitlements, they could circumvent the manda-

tory sandboxing requirement and still submit their application to

the MAS. Users might believe that apps retrieved from the MAS

are restricted by the sandbox mechanism. Unfortunately, there is

no easy way for users to see whether an app is actually sandboxed,

aside from a column in the Activity Monitor, which is not visible

by default. We suggest that a warning should be displayed to the

user for unsandboxed apps, informing him about the implications.

However, the effectiveness of security indicators and warnings is a

major topic of discussion [2, 24, 25, 52, 60], but might provide an

incentive for developers to adopt sandboxing even outside the MAS.

With macOS Mojave (10.4), permissions, similar to iOS or Android,

were added that provide an additional layer of protection. Even

unsandboxed apps are restricted in accessing user data without

the user’s consent, mitigating the impact of sandbox bypasses, see

Section 6 for details.

We argue that the issue is a consequence of the sandbox being

initialized during the app startup in contrast to being enforced by

the operating system.

6 SECURITY & PRIVACY IMPROVEMENTS IN
MACOS MOJAVE

With macOS Mojave (10.14), changes were made to the underlying

security mechanisms. As Mojave was released recently, our dataset

did not contain enough apps utilizing the improvements to infer

meaningful results. However, Mojave’s additions do not fundamen-

tally change the impact of the results presented in this paper, and

are discussed here as a basis for future work on this topic.

Permissions. Apps ask users for their consent to access private in-

formation since macOS Mountain Lion (10.8) with the introduction

of Gatekeeper. Gatekeeper requires apps to be signed by registered

developers [12]. In addition, apps linked against the Mojave SDK

are required to define usage descriptions in the app’s Info.plist. If
there is no such description and the app tries to access the resource,

it will be terminated. This is enforced for both API calls and direct

access to the data through the file system.

Hardened Runtime. The Hardened Runtime can be used to restrict

potentially harmful operations during runtime, such as dynami-

cally loading libraries, executing unsigned code pages, or accessing

5
CVE-2018-4229

Session 5: Cybersecurity WPES ’19, November 11, 2019, London, United Kingdom

157

certain resources such as the user’s address book. Similar to the

App Sandbox the hardened runtime requires code-signing and is

configured through entitlements embedded in the app’s binary (see

Table A.2 for details). If an entitlement is missing that guards access

to a certain resource, Gatekeeper then suppresses the respective

permission dialog, thus preventing the user from consenting. As a

consequence, the app will not be able to access the resource, even

if it is unsandboxed.

App Notarization. App Notarization requires an additional certifi-

cate issued from the Apple Notarization Service, which is called a

Notarization Token and gets stapled to the app’s original code sig-

nature. This allows Apple to check non-MAS apps for malware. If

malware is found, a Notarization Token is not issued and the de-

veloper is notified. When App Notarization becomes mandatory as

announced [42], the distribution of malware that can be identified

by Apple is prevented before it is installed on the user’s machine.

App Notarization requires apps to have the Hardened Runtime

enabled, which in turn requires configuring entitlements in order to

access certain resources. With App Notarization becoming manda-

tory in the near future, we expect future results of non-MAS apps

to change drastically.

7 CONCLUSION
Apple enforces macOS apps to be sandboxed, when they are dis-

tributed through the MAS. In addition, Apple has made the con-

figuration of the sandbox easier for developers. We performed a

large-scale analysis of macOS apps and found that almost all apps

retrieved outside of the MAS lack sandboxing. Therefore, we think

that Apple’s enforcement is the main reason why macOS apps are

sandboxed. However, since entitlements for apps from both MAS

and MU are distributed similarly, we think that easy configuration

supports developers in making sensible choices. Developers might

lack incentives for utilizing the App Sandbox voluntarily and fur-

ther work is needed to address this problem. Forcing developers to

use sandboxing might be effective, but impacts the freedom to de-

velop apps with sophisticated features, which might not be possible

in an otherwise too restrictive environment.

REFERENCES
[1] Yasemin Acar, Michael Backes, Sven Bugiel, Sascha Fahl, Patrick D. McDaniel,

and Matthew Smith. 2016. Sok: lessons learned from android security research

for appified software platforms. In IEEE Symposium on Security and Privacy.
IEEE Computer Society, 433–451.

[2] Devdatta Akhawe and Adrienne Porter Felt. 2013. Alice in warningland: A

large-scale field study of browser security warning effectiveness. In USENIX
Security Symposium. USENIX Association, 257–272.

[3] Apple Inc. 2011. App sandbox and the mac app store. In WWDC. https : / /
developer.apple.com/videos/play/wwdc2011/204/.

[4] Apple Inc. [n. d.] App store review guidelines. Retrieved April 24, 2019 from

https://developer.apple.com/app-store/review/guidelines/.

[5] Apple Inc. 2016. Apple developer documentation: app sandbox design guide.

(September 13, 2016). Retrieved September 18, 2018 from https://developer.

apple.com/library/archive/documentation/Security/Conceptual/AppSandbox

DesignGuide.

[6] Apple Inc. 2017. Apple developer documentation: entitlement key reference.

(March 27, 2017). https://developer.apple.com/library/archive/documentation/

Miscellaneous/Reference/EntitlementKeyReference.

[7] Apple Inc. 2016. Creating xpc services. Retrieved April 24, 2019 from https:

//developer.apple.com/library/content/documentation/MacOSX/Conceptual/

BPSystemStartup/Chapters/CreatingXPCServices.html.

[8] Apple Inc. [n. d.] Enterprise partner feed relational - affiliate resources. Re-

trieved April 24, 2019 from https : / /affiliate . itunes .apple .com/resources/

documentation/itunes-enterprise-partner-feed/.

[9] Apple Inc. [n. d.] Entitlements - bundle resources | apple developer documenta-

tion. Retrieved April 25, 2019 from https://developer.apple.com/documentation/

bundleresources/entitlements.

[10] Apple Inc. [n. d.] Itunes search api - affiliate resources. Retrieved April 24, 2019

from https://affiliate.itunes.apple.com/resources/documentation/itunes-store-

web-service-search-api/.

[11] Apple Inc. [n. d.] Mac app store preview. Retrieved April 24, 2019 from https:

//itunes.apple.com/us/genre/id39.

[12] Apple Inc. 2018. macOS Security – Overview for IT. White paper. (November

2018). https://www.apple.com/business/resources/docs/macOS_Security_

Overview.pdf.

[13] [n. d.] Appshopper. Retrieved April 24, 2019 from http://appshopper.com/mac/.

[14] Dionysus Blazakis. 2011. The Apple Sandbox. White paper.

[15] Theodore Book, Adam Pridgen, and Dan S.Wallach. 2013. Longitudinal analysis

of android ad library permissions. CoRR, abs/1303.0857.
[16] Simon Cooper, Nick Lane-Smith, and Joshua Osborne. 2014. Restriction of

program process capabilities. (2014). Patent No. US Patent 8,635,663 B2. https:

//patents.google.com/patent/US8635663B2.

[17] Razvan Deaconescu, Luke Deshotels, Mihai Bucicoiu,William Enck, Lucas Davi,

and Ahmad-Reza Sadeghi. 2016. Sandblaster: reversing the apple sandbox.CoRR,
abs/1608.04303.

[18] Zhui Deng, Brendan Saltaformaggio, Xiangyu Zhang, and Dongyan Xu. 2015.

Iris: vetting private API abuse in ios applications. In ACM Conference on Com-
puter and Communications Security. ACM, 44–56.

[19] Luke Deshotels, Razvan Deaconescu, Costin Carabas, Iulia Manda, William

Enck, Mihai Chiroiu, Ninghui Li, and Ahmad-Reza Sadeghi. 2018. Ioracle:

automated evaluation of access control policies in ios. In AsiaCCS. ACM, 117–

131.

[20] Luke Deshotels, Razvan Deaconescu, Mihai Chiroiu, Lucas Davi, William Enck,

and Ahmad-Reza Sadeghi. 2016. Sandscout: automatic detection of flaws in

ios sandbox profiles. In ACM Conference on Computer and Communications
Security. ACM, 704–716.

[21] Charles Edge and Daniel O’Donnell. 2016. Enterprise Mac Security. (3rd ed.).

Apress.

[22] Stefan Esser. 2014. Ios 8: containers, sandboxes and entitlements. Retrieved

February 12, 2018 from https://www.slideshare.net/i0n1c/ruxcon-2014-stefan-

esser-ios8-containers-sandboxes-and-entitlements.

[23] Adrienne Porter Felt, Kate Greenwood, and David A. Wagner. 2011. The effec-

tiveness of application permissions. InWebApps. USENIX Association.

[24] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin,

and David A. Wagner. 2012. Android permissions: user attention, comprehen-

sion, and behavior. In SOUPS. ACM, 3.

[25] Adrienne Porter Felt, RobertW. Reeder, Alex Ainslie, Helen Harris, MaxWalker,

Christopher Thompson, Mustafa Emre Acer, Elisabeth Morant, and Sunny

Consolvo. 2016. Rethinking connection security indicators. In SOUPS. USENIX
Association, 1–14.

[26] Chris Foresman. 2012. Apple’s latest sandboxing deadline delay signals moving

goalposts for devs. (February 22, 2012). Retrieved March 14, 2018 from https:

//arstechnica.com/?p=36730.

[27] Bin Fu, Jialiu Lin, Lei Li, Christos Faloutsos, Jason I. Hong, and Norman M.

Sadeh. 2013. Why people hate your app: making sense of user feedback in a

mobile app store. In KDD. ACM, 1276–1284.

[28] Ian Goldberg, David A. Wagner, Randi Thomas, and Eric A. Brewer. 1996.

A secure environment for untrusted helper applications. In USENIX Security
Symposium. USENIX Association.

[29] Shubham Jain and Janne Lindqvist. 2014. Should i protect you? understanding

developers’ behavior to privacy-preserving apis. In USEC ’14, 1–10.
[30] Ivan Krstić and Love Hörnquist Åstrand. 2016. File system access for one

or more sandboxed applications. (2016). Patent No. US Patent 9,342,689 B2.

https://patents.google.com/patent/US9342689B2.

[31] Ivan Krstić, Austin G. Jennings, and Richard L. Hagy. 2016. Methods for restrict-

ing resources used by a program based on entitlements. (2016). Patent No. US

Patent App. 15/060,837. https://patents.google.com/patent/US20160321471A1.

[32] Ivan Krstić and Pierre-Olivier J. Martel. 2013. System andmethod for preserving

references in sandboxes. (2013). Patent No. US Patent 8,601,579 B2. https :

//patents.google.com/patent/US8601579B2.

[33] Andreas Kurtz. 2016. Dynamic analysis and privacy implications of Apple iOS
apps. Ph.D. Dissertation. University of Erlangen-Nuremberg, Germany.

[34] Jonathan Levin. 2017. *OS Internals: Security & Insecurity. Volume 3.

[35] Jonathan Levin. 2017. *OS Internals: User Space. Volume 1.

[36] Jonathan Levin. 2012. Mac OS X and iOS Internals: To the Apple’s Core. Wiley.

[37] Bin Liu, Mads Schaarup Andersen, Florian Schaub, Hazim Almuhimedi, Shikun

Zhang, Norman M. Sadeh, Yuvraj Agarwal, and Alessandro Acquisti. 2016.

Session 5: Cybersecurity WPES ’19, November 11, 2019, London, United Kingdom

158

https://developer.apple.com/videos/play/wwdc2011/204/
https://developer.apple.com/videos/play/wwdc2011/204/
https://developer.apple.com/app-store/review/guidelines/
https://developer.apple.com/library/archive/documentation/Security/Conceptual/AppSandboxDesignGuide
https://developer.apple.com/library/archive/documentation/Security/Conceptual/AppSandboxDesignGuide
https://developer.apple.com/library/archive/documentation/Security/Conceptual/AppSandboxDesignGuide
https://developer.apple.com/library/archive/documentation/Miscellaneous/Reference/EntitlementKeyReference
https://developer.apple.com/library/archive/documentation/Miscellaneous/Reference/EntitlementKeyReference
https://developer.apple.com/library/content/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingXPCServices.html
https://developer.apple.com/library/content/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingXPCServices.html
https://developer.apple.com/library/content/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingXPCServices.html
https://affiliate.itunes.apple.com/resources/documentation/itunes-enterprise-partner-feed/
https://affiliate.itunes.apple.com/resources/documentation/itunes-enterprise-partner-feed/
https://developer.apple.com/documentation/bundleresources/entitlements
https://developer.apple.com/documentation/bundleresources/entitlements
https://affiliate.itunes.apple.com/resources/documentation/itunes-store-web-service-search-api/
https://affiliate.itunes.apple.com/resources/documentation/itunes-store-web-service-search-api/
https://itunes.apple.com/us/genre/id39
https://itunes.apple.com/us/genre/id39
https://www.apple.com/business/resources/docs/macOS_Security_Overview.pdf
https://www.apple.com/business/resources/docs/macOS_Security_Overview.pdf
http://appshopper.com/mac/
https://patents.google.com/patent/US8635663B2
https://patents.google.com/patent/US8635663B2
https://www.slideshare.net/i0n1c/ruxcon-2014-stefan-esser-ios8-containers-sandboxes-and-entitlements
https://www.slideshare.net/i0n1c/ruxcon-2014-stefan-esser-ios8-containers-sandboxes-and-entitlements
https://arstechnica.com/?p=36730
https://arstechnica.com/?p=36730
https://patents.google.com/patent/US9342689B2
https://patents.google.com/patent/US20160321471A1
https://patents.google.com/patent/US8601579B2
https://patents.google.com/patent/US8601579B2

Follow my recommendations: A personalized privacy assistant for mobile app

permissions. In SOUPS. USENIX Association, 27–41.

[38] Wei Liu, Ge Zhang, JunChen, Yuze Zou, andWenchaoDing. 2015. Ameasurement-

based study on application popularity in android and ios app stores. In Mo-
bidata@MobiHoc. ACM, 13–18.

[39] Michael Maass, Adam Sales, Benjamin Chung, and Joshua Sunshine. 2016. A

systematic analysis of the science of sandboxing. PeerJ Computer Science, 2.
[40] [n. d.] Macos - security - apple. Retrieved September 18, 2018 from https :

//www.apple.com/macos/security/.

[41] [n. d.] Macupdate. Retrieved April 24, 2019 from https://macupdate.com.

[42] Pierre-Olivier Martel, Kelly Yancey, and Garrett Jacobson. 2018. Your apps and

the future of macos security. InWWDC. https://developer.apple.com/videos/

play/wwdc2018/702/.

[43] William Martin, Federica Sarro, Yue Jia, Yuanyuan Zhang, and Mark Harman.

2017. A survey of app store analysis for software engineering. IEEE Trans.
Software Eng., 43, 9, 817–847.

[44] [n. d.] Mas-cli/mas. Retrieved April 1, 2019 from https://github.com/mas-

cli/mas.

[45] Charlie Miller, Dionysus Blazakis, Dino Dai Zovi, Stefan Esser, Vincenzo Iozzo,

and Ralf-Philipp Weinmann. 2012. iOS Hacker’s Handbook. Wiley, (May 2012).

isbn: 978-1118204122.

[46] Charlie Miller and Dino A. Dai Zovi. 2009. The Mac Hacker’s Handbook. (1st ed.).
Wiley. isbn: 978-0-470-39536-3.

[47] Niels Provos, Markus Friedl, and Peter Honeyman. 2003. Preventing privilege

escalation. In USENIX Security Symposium. USENIX Association.

[48] David Rahardja, Toby C. Paterson, and Anthony D’Auria. 2018. Mediated data

exchange for sandboxed applications. (2018). Patent No. US Patent 9,898,355

B2. https://patents.google.com/patent/US9898355B2.

[49] Z. Cliffe Schreuders, Tanya McGill, and Christian Payne. 2013. The state of the

art of application restrictions and sandboxes: A survey of application-oriented

access controls and their shortfalls. Computers & Security, 32, 219–241.
[50] Rui Shu, Peipei Wang, Sigmund Albert Gorski III, Benjamin Andow, Adwait

Nadkarni, Luke Deshotels, Jason Gionta, William Enck, and Xiaohui Gu. 2016.

A study of security isolation techniques. ACM Comput. Surv., 49, 3, 50:1–50:37.

[51] Will Strafach. 2017. Archived. (October 3, 2017). Retrieved April 25, 2019 from

https://web.archive.org/web/20180207074222/https:/twitter.com/chronic/

status/915281242597314560.

[52] Joshua Sunshine, Serge Egelman, Hazim Almuhimedi, Neha Atri, and Lorrie

Faith Cranor. 2009. Crying wolf: an empirical study of SSL warning effective-

ness. In USENIX Security Symposium. USENIX Association, 399–416.

[53] Yogesh Swami. 2012. Axelexic/sanboxinterposed. Retrieved April 1, 2019 from

https://github.com/axelexic/SanboxInterposed.

[54] Nicolas Viennot, Edward Garcia, and Jason Nieh. 2014. A measurement study

of google play. In SIGMETRICS. ACM, 221–233.

[55] Pedro Vilaça. 2011. Apple’s sandbox guide. Version 0.1. (September 3, 2011).

[56] Tielei Wang, Kangjie Lu, Long Lu, Simon P. Chung, andWenke Lee. 2013. Jekyll

on ios: when benign apps become evil. In USENIX Security Symposium. USENIX

Association, 559–572.

[57] Patrick Wardle. 2018. Escaping the microsoft office sandbox. (August 15, 2018).

Retrieved April 24, 2019 from https://objective-see.com/blog/blog_0x35.html.

[58] Takuya Watanabe, Mitsuaki Akiyama, Fumihiro Kanei, Eitaro Shioji, Yuta

Takata, Bo Sun, Yuta Ishii, Toshiki Shibahara, Takeshi Yagi, and Tatsuya Mori.

2017. A study on the vulnerabilities of mobiles apps associated with software

modules. CoRR, abs/1702.03112.
[59] Xuetao Wei, Lorenzo Gomez, Iulian Neamtiu, and Michalis Faloutsos. 2012.

Permission evolution in the android ecosystem. In ACSAC. ACM, 31–40.

[60] Primal Wijesekera, Arjun Baokar, Ashkan Hosseini, Serge Egelman, David A.

Wagner, and Konstantin Beznosov. 2015. Android permissions remystified: A

field study on contextual integrity. In USENIX Security Symposium. USENIX

Association, 499–514.

[61] Luyi Xing, Xiaolong Bai, Tongxin Li, XiaoFeng Wang, Kai Chen, Xiaojing Liao,

Shi-Min Hu, and Xinhui Han. 2015. Cracking app isolation on apple: unautho-

rized cross-app resource access on MAC OS X and ios. In ACM Conference on
Computer and Communications Security. ACM, 31–43.

[62] Hengshu Zhu, Hui Xiong, Yong Ge, and Enhong Chen. 2014. Mobile app rec-

ommendations with security and privacy awareness. In KDD. ACM, 951–960.

Session 5: Cybersecurity WPES ’19, November 11, 2019, London, United Kingdom

159

https://www.apple.com/macos/security/
https://www.apple.com/macos/security/
https://macupdate.com
https://developer.apple.com/videos/play/wwdc2018/702/
https://developer.apple.com/videos/play/wwdc2018/702/
https://github.com/mas-cli/mas
https://github.com/mas-cli/mas
https://patents.google.com/patent/US9898355B2
https://web.archive.org/web/20180207074222/https:/twitter.com/chronic/status/915281242597314560
https://web.archive.org/web/20180207074222/https:/twitter.com/chronic/status/915281242597314560
https://github.com/axelexic/SanboxInterposed
https://objective-see.com/blog/blog_0x35.html

A ENTITLEMENTS

Table A.1: Sandbox entitlements that can be configured through Xcode
†Each key starts with com.apple.security.
‡These entitlements are boolean entitlements as well. However, their value can either be set to Read Only or to Read/Write in Xcode. Depending on the chosen

value, the suffix .read-only or .read-write is added to the key. If the entitlement is not set (-), access to the resource is not granted.

Group Key† Xcode Label Default Value

Network network.server Incoming Connections (Server) -

network.client Outgoing Connections (Client) -

Hardware device.camera Camera -

device.microphone Microphone -

device.usb USB -

print Printing -

device.bluetooth Bluetooth -

App Data personal-information.addressbook Contacts -

personal-information.location Location -

personal-information.calendars Calendar -

File Access
‡ files.user-selected User Selected Files Read Only

files.downloads Downloads Folder -

assets.pictures Pictures Folder -

assets.music Music Folder -

assets.movies Movies Folder -

Table A.2: Hardened Runtime entitlements that can be configured through Xcode
†Each key starts with com.apple.security.
‡This is similar to the Microphone sandbox entitlement. Unsure whether there is a specific reason for not re-using the Microphone entitlement, as is done with

the App Data sandbox entitlements.
∗These keys are also in the set of Sandbox entitlements. If an unsandboxed but hardened app has no such entitlement, the permission dialog is not displayed to

the user. Hence, the app cannot be added to the TCC database, which is required for accessing the resource.
⋆This is similar to the Pictures Folder sandbox entitlement. Instead of granting access to the user’s ~/Pictures/ directory, this is required for showing a permission

dialog to the user, if the app tries to access pictures from the Photos app through the PhotoKit API. This entitlement grants read and write access. The Pictures
Folder in contrast, can be set to read access only as well.

Group Key† Xcode Label

Runtime Exceptions cs.allow-jit Allow Execution of JIT-compiled Code

cs.allow-unsigned-executable-memory Allow Unsigned Executable Memory

cs.allow-dyld-environment-variables Allow DYLD Environment Variables

cs.disable-library-validation Disable Library Validation

cs.disable-executable-page-protection Disable Executable Memory Protection

cs.debugger Debugging Tool

Resource Access device.audio-input‡ Audio Input

device.camera∗ Camera

personal-information.location∗ Location

personal-information.addressbook∗ Address Book

personal-information.calendars∗ Calendar

personal-information.photos-library⋆ Photos Library

automation.apple-events Apple Events

Session 5: Cybersecurity WPES ’19, November 11, 2019, London, United Kingdom

160

Table A.3: Temporary exception entitlements (not shown in Xcode)
†Each key starts with com.apple.security.temporary-exception.
‡These entitlements are boolean entitlements as well. However, their value can either be set to Read Only or to Read/Write by appending the suffix .read-only or

.read-write to the key.
∗This allows to specify an arbitrary sandbox profile in the SBPL, which is not documented and presumably only allowed for a good reason. Only four third-party

apps in our dataset make use of this entitlement. Mistakes in the SBPL configuration can render the sandbox protection ineffective, as was recently shown for

Microsoft Office [57].

Group Key† Name

apple-events Apple Events

audio-unit-host Audio Unit Hosting

mach-lookup.global-name Global Mach Service

mach-register.global-name Global Mach Service Dynamic Registration

iokit-user-client-class IOKit User Client Class

File Access
‡ files.home-relative-path Home Relative Path

files.absolute-path Absolute Path

Shared Preference Domain
‡ shared-preference Shared Preference Domain

Undocumented sbpl∗ SBPL

Session 5: Cybersecurity WPES ’19, November 11, 2019, London, United Kingdom

161

	Abstract
	1 Introduction
	2 Foundations: The App Sandbox
	2.1 Threat Model
	2.2 Sandbox Lifecycle

	3 Related Work
	App Sandbox
	App Review
	Permissions

	4 Methodology
	4.1 Application Crawling
	4.2 Feature Extraction

	5 Evaluation of Sandbox Adoption
	5.1 Sandbox Adoption in General
	5.2 Entitlements
	5.3 Privilege Separation
	5.4 Bypassing the Sandbox

	6 Security & Privacy Improvements in macOS Mojave
	Permissions
	Hardened Runtime
	App Notarization

	7 Conclusion
	A Entitlements

