

30th October 2019 Brave London

Enhanced Performance and Privacy for Core Internet Protocols

Erik Sy

Motivation

Increase the quality of experience for web users

The delay of the connection establishments presents a significant overhead of an average web flow

Loading...

- Web server provides relevant DNS records to it's clients
 - Improves client's privacy posture towards resolver & reduces delay

- Client does not send application data to presented IP address before a successful validation of the used DNS record
- Preferred validation mechanism uses server authentication during connection establishment
- Fallback validation mechanism includes traditional DNS lookup to make a comparison between both DNS records

1% of clients saves at least 80ms per DNS query compared to status quo

Allows validating the client's IP address without an additional round trip

Main findings²

- Fast Open cookies present a kernel-based tracking mechanism
- Tracking feasible for network observer
- Feasible tracking periods are unrestricted
- Enables tracking across private browsing modes, browser restarts, and different applications
- Reactions by browser vendors
 - Mozilla stopped using TFO within Firefox
 - Microsoft stopped using TFO within the private browsing mode of Edge

 Requirement of matching server IP address for abbreviated handshakes does not anticipate real-world load balancing

Cross-layer approach to mitigate privacy and performance issues of TFO

- Allows a client-server pair to establish a new TLS connection with a previously exchanged symmetric key
 - Reduces the delay and the computational overhead of TLS handshakes
 - Server can uniquely identify clients based on this secret key
- Deployment on the Internet
 - 96% of TLS-enabled Alexa Top Million Sites support TLS resumption
 - All popular web browsers support this feature, which is included in every TLS version

- Main findings³
 - Safari and Firefox can be tracked for at least 24h using this mechanism
 - Prolongation attack extends feasible tracking periods
 - Only TLS v1.3 protects against tracking by network observer
 - Most browsers do not protect against third-party tracking via TLS SR

¹⁶ 3: Sy et al. "Tracking Users across the Web via TLS Session Resumption" (2018)

- Alexa Top 1K Site requires on average 20.24 connections to different hosts
- These hostnames form on average 9.49 TLS trust groups¹

4: Sy et al. "Enhanced Performance for the encrypted Web through TLS Resumption across Hostnames" (2019)

- TLS 1.3 allows resumptions across hostnames, if the corresponding hostnames can be validated via the same server certificate
- Server signals that a group of hostnames mutually support TLS resumptions
 - Presented server certificate needs to be valid for theses hostnames
- SAN-list of certificate can be used to define this group
 - Adds complexity to the generation of server certificates
 - Helps to avoid resumptions to hostnames for which the cert is not valid
- Extension for the NewSessionTicket frame

Elapsed time

Network latency	Initial	1-RTT resumed	0-RTT resumed
0.3 ms	29.2 ms	6.3 ms	6.6 ms
50 ms	190.1 ms	160.1 ms	109.6 ms
100 ms	340.8 ms	310.3 ms	209.7 ms

CPU time

Peer	Initial	1-RTT resumed	0-RTT resumed
Server	7.8 ms	2.3 ms	2.6 ms
Client	9.2 ms	2.4 ms	2.5 ms

- Converts about 58.7% of the required full TLS handshakes to resumed connection establishments
- Reduces the required CPU time for the TLS connection establishments by about 44%
- Reduces the elapsed time to establish all required TLS connections by up to 30.6%

- QUIC is going to replace TLS over TCP in HTTP/3
- Improves problems of TLS over TCP
 - Protocol Entrenchment
 - Implementation Entrenchment
 - Handshake Delay
 - Head-of-line Blocking
 - Mobility
- Google's QUIC protocol is already widely deployed on the Internet
 - Accounts for 7% of global Internet traffic
 - Supported by Google Chrome (approx. 60% browser market share)

Source-address token speed up the validation of the client's IP address in subsequent connections between the same peers

- QUIC's server config contains a public key used to bootstrap the cryptographic connection establishment
- Client reuses server config across different connections
- Tracking feasible if server distributes unique server configs/ server config identifiers to its clients

- Main findings⁵
 - Default configuration of Chrome enables unlimited tracking periods
 - Third-party tracking feasible via this mechanism for Chrome
 - Network observers may track user's via QUIC's server config
- Reactions by browser vendors
 - Google Chrome restricts feasible tracking periods to one week

- QUIC server having a TLS trust-relation accept source-address tokens generated by each other
 - Each accepted source-address token allows client-server pair to save a round trip time during the connection establishment
- Novel QUIC transport parameter is used to inform the client about other hosts accepting a provided validation token

Proposal saves a round-trip time on 58.75% of the established connections

Longest path of sequential connections with retry is reduced by 39.1%

Distribution of out-of-band validation token via DNS resolver or other QUIC server

²⁹ 7: Sy et al. "QUICker Connection Establishment with Out-Of-Band Validation Tokens" (2019)

Each initial QUIC connection establishment can save up to a RTT

Assumes a QuicSocks Proxy colocated with the DNS resolver

8: Sy et al. "Accelerating QUIC's Connection Establishment on High-Latency Access Networks" (2019)

Proposal achieves better performance if RTT_{Server} < RTT_{direct}

Stateless	Latency to establish co	ency to establish connection (incl. DNS)		
retry	Status quo	Proposal		
w/o	RTT _{DNS} + RTT _{direct}	RTT _{DNS} + RTT _{Server}		
with	RTT _{DNS} + 2* RTT _{direct}	RTT _{DNS} + 2* RTT _{Server}		

24.3% of nodes saves at least 15ms without and 30ms with stateless retry

- Deactivate TCP Fast Open
- Applications restricting tracking via HTTP cookies should apply the same limitations to tracking via the presented mechanisms in TLS and QUIC
- Deploying resolver-less DNS

Short lifetime for the investigated tracking mechanisms provides already significant performance gains while limiting feasible tracking periods

- TCP Fast Open, TLS, and QUIC contain mechanisms that can severely harm the privacy of users
- Popular browsers do not sufficiently protect against these privacy risks
- Investigated mechanisms should be used with a short expiration time to balance the performance versus privacy trade-off
- Several performance optimizations are feasible for core Internet protocols

Questions and Answers

E-mail:Brave@erik-sy.deSlides:https://erik-sy.de/brave