Accelerating QUIC's Connection Establishment on High-Latency Access Networks

Erik Sy
Introducing QUIC

- Application: HTTP/2
- Security: TLS
- Transport: TCP
- Network: IP

QUIC

HTTP/2

UDP
Introduction to the QUIC Transport Protocol

- QUIC is going to replace TLS over TCP in HTTP/3

- Improves problems of TLS over TCP
 - Protocol Entrenchment
 - Implementation Entrenchment
 - Handshake Delay
 - Head-of-line Blocking
 - Mobility
QUIC’s Stateless Retry Mechanism

- Source-address tokens are used to validate the client’s IP address

Client

\[\text{ClientHello, token}\]

peers proceed with connection establishment ...

Server
Problem Statement

- Clients usually experience higher network latencies to reach online services compared to their ISP-provided DNS resolver.
Design Goals for our Proposal

1. Deployable on today’s Internet
2. Reduces the delay of QUIC handshakes requiring a prior DNS lookup
3. Supports NATed clients and does not conduct IP address spoofing
4. Guarantees end-to-end encryption between client and web server
5. Limits the consumption of the proxy’s bandwidth
6. Privacy assurances matching the use of a DNS resolver
Introducing the QuicSocks Design

- Assumes a QuicSocks Proxy colocated with the DNS resolver
Analytical Performance Evaluation

- **Proposal** achieves better performance if $RTT_{Server} < RTT_{direct}$

<table>
<thead>
<tr>
<th>Stateless retry</th>
<th>Latency to establish connection (incl. DNS)</th>
<th>Status quo</th>
<th>Proposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>w/o</td>
<td>$RTT_{DNS} + RTT_{direct}$</td>
<td>$RTT_{DNS} + RTT_{Server}$</td>
<td></td>
</tr>
<tr>
<td>with</td>
<td>$RTT_{DNS} + 2 \times RTT_{direct}$</td>
<td>$RTT_{DNS} + 2 \times RTT_{Server}$</td>
<td></td>
</tr>
</tbody>
</table>

QuicSocks proxy/DNS resolver

- Client
- RTT$_{direct}$
- RTT$_{DNS}$
- RTT$_{Server}$
- Server
24.3% of nodes saves at least 15ms without and 30ms with stateless retry
Conclusion

- Proposal provides great performance improvements for QUIC’s connection establishment requiring prior DNS lookup

- Proposed handling of QUIC’s stateless retry can be adapted by all sorts of proxies to improve the delay of QUIC’s connection establishments
Questions and Answers

E-mail: IPCCC@erik-sy.de
Slides: https://erik-sy.de/ipccc