
Key-value Storage with Cryptographic
Client-separation
Maximilian Blochberger

blochberger@informatik.uni-hamburg.de

January 12, 2019

A key-value storage is presented, which in con-
trast to traditional access mechanism uses cryp-
tographic methods in order to separate client
data. The presented key-value storage protects
the confidentiality and integrity of users against
malicious service operators as well as imple-
mentation errors in the server software.

1 Introduction

Key-value stores are a fundamental pattern in
modern software development. They allow stor-
ing arbitrary data (values) under a given unique
identifier (key). Document storage systems are
basically key-value stores as well, as they store
documents (value) for a given file name and
path (key).

Key-value storages are often offered as a ser-
vice on the internet and can be used by mul-
tiple users simultaneously. In order to protect
user data, access management has to be estab-
lished. Traditional access management mecha-
nisms link data stored to the service to a user ac-
count. Some services, such as Apple’s iCloud or
Amazon S3, offer end-to-end encryption, which
protects data from being accessed by the ser-
vice operator or in the case it gets leaked, e. g.,
as the result of an implementation error. Most
services however, such as Dropbox or Amazon
S3, offer encryption at rest (or server-side en-
cryption), where the cryptographic key has to
be transmitted as part of the request, or no
encryption at all. Encryption at rest might
protect against some accidental data leakage,
but does not protect against a malicious service
operator.

Since service operators and application devel-
opers are responsible for protecting user data,
especially since the new General Data Protec-
tion Regulation (GDPR) is in effect. Therefore,
they should be interested in solutions where
they do not have access to data they do not need
in order to provide the service’s functionality
(data minimization). In this paper a key-value
storage is presented, which is fully functional
but protects the confidentiality and integrity of
user data in a way, that the service operator
does not learn more than necessary for fulfilling
the service’s functionality.

2 Attacker Model

The attacker, against whom our system is still
able to protect against, is an insider, e. g., the
operator of the key-value storage. He can ac-
tively read and modify each key-value pair as
well as network traffic. His computational com-
plexity is limited and he cannot compromise
the device used by the end user.

The proposed system protects the confidential-
ity and integrity of data submitted. The at-
tacker is not able to link two files to the same
user. Modifications of key-value pairs cannot
be prevented, but will be detected by the user
if they occur.

3 Cryptographic Client-separation

The key that is used to identify values stored
to the key-value storage will be called name
while the cryptographic key used for encrypting

1



Client Server

i′ = Hp(i)
c = Es(n ‖ i ‖ m)

(i′, c)

S = {(x1, x2) ∈ S|x1 6= i′} ∪ {(i′, c)}

Figure 1: The process of storing a key-value pair.

values will be called secret key for disambigua-
tion.

3.1 Encryption of Values

To protect the confidentiality of values stored
to the key-value storage, each value m will be
encrypted with a secret key s generated and
stored on the user’s device. The resulting ci-
phertext c can only be decrypted by the user
in possession of the secret key. In order to
avoid that the encryption of equal values will
result in equal ciphertexts, a nonce n is used
(IND-CPA).

To protect the integrity of values, an authenti-
cated encryption system is used and the name
i is added to the value prior to encryption.

c = Es(n ‖ i ‖ m)

3.2 Personalization of Names

Names are developer- or user-chosen strings
which are used to identify stored values, hence
they can be protected using a one-way hash-
ing function. Since there are no per-user name
spaces on the server, they need to be globally
unique (collision resistance). To avoid the same
name of two different users or of two applica-
tions of the same user to point at the same
remote value, a keyed hashing mechanism is
used. The name i as well a personalization key

p will be hashed with a cryptographically secure
hashing function.

h = Hp(i)

3.3 Process

In order to store a value m for a given name
i the name i is first hashed to i′ using the
personalization key p. The value m is then
encrypted with the secret key s resulting in the
encrypted value c. The protected key-value pair
is transmitted to the server, where it is stored
in the database S. This process is depicted
in fig. 1.

In order to retrieve a value for a given name
i, the name i is first hashed to i′ using the
personalization key p. The protected name is
transmitted to the server. The server looks up
the encrypted value c stored for the protected
key i′ and returns it to the client. The client
can now decrypt the encrypted value c if it has
not been modified, yielding the decrypted value
m. This process is depicted in fig. 2

4 Demonstrator

In order to demonstrate the key-value storage
presented a demo service and application were
realized.

Cryptographic client-separation is not enough
to protect values from being linked by an ad-
versarial service operator. Values can be linked

2



Client Server

i′ = Hp(i)

i′

(i′, c) ∈ S
(i′, c)

i, n, m = E−1
s (c)

Figure 2: The process of retrieving a key-value pair.

by traffic data used in the communication be-
tween the server and the client as well. There-
fore, an anonymization network such as Tor
should be used for communication. Support for
a lightweight anonyization proxy based on the
work of Panchenko et al. [3] has been added to
the client framework. A simple Apache or Squid
proxy server can be used for that purpose.

4.1 Service

The key-value storage service was implemented
as an open source project written in Python1.
It is a simple web service that offers a REST-
style API for creating, retrieving, updating, and
deleting key-value pairs (CRUD). The service
simply stores arbitrary binary values for given
keys in an SQLite or Postgres database and
returns them if requested by a given key.

4.2 Client Framework

The client code has been implemented as an
open source software library written in Swift

1AppPETs/PrivacyService: Implementation of privacy-
friendly services: https://github.com/AppPETs/
PrivacyService

for iOS and macOS2. It is planned to release a
library written in Java Android as well, which
has not been published at the time of writing.

It offers a simple API for using the presented
key-value storage with an instance of the pro-
vided service. In addition, it also takes care
of securely storing cryptographic material in
the device’s keychain, which is protected by
the tamper-resistant co-processor called Secure
Enclave on iOS and macOS devices [1] if avail-
able.

4.3 Demo Application

An open source demo application has been
written for iOS3. An application for Android
has been written as well, in order to demon-
strate that the key-value storage is platform-
independant. The Android version has not been
published at the time of writing.

The application offers a simple todo list where
tasks can be added and marked as completed.
Each change is propagated to the remote key-
value storage.

2AppPETs/PrivacyKit: Framework offering easy to use
privacy enhancing technologies (PETs) for iOS and
macOS applications: https://github.com/AppPETs/
PrivacyKit

3AppPETs/Todo-iOS: Todo-list app for iOS demon-
strating a secure key-value storage: https://github.
com/AppPETs/Todo-iOS

3

https://github.com/AppPETs/PrivacyService
https://github.com/AppPETs/PrivacyService
https://github.com/AppPETs/PrivacyKit
https://github.com/AppPETs/PrivacyKit
https://github.com/AppPETs/Todo-iOS
https://github.com/AppPETs/Todo-iOS


Upon first launch of the application a master
key is generated and persisted in the devices
keychain. The secret key as well as the person-
alization key are derived from the master key
given an app-specific context. This allows fine-
grained control to the developer over whether
the key-value store can be used in different ap-
plications. The master key can be exported as
a QR code, so that the todo list can be synchro-
nized between multiple devices of the same user.
This works across different operating systems.
The QR code is not shown immediately. The
device owner has to authenticate beforehand
by entering the device’s passcode or scanning
his fingerprint, depending on the devices capa-
bilities and configuration. This functionality is
also provided by the client framework.

5 Security Evaluation

It is assumed that for communication between
the client and the service an anonymous commu-
nication network is used and our attacker model
is not stronger than that of the anonymization
network. Raymond [4] provides an overview of
potential attacks on anymization systems.

5.1 Confidentiality

The values can only be decrypted by parties
that are also in possession of the secret key s.
The secret key s is stored on the user’s device.
It is assumed that the user does not export
the secret key if he is under surveillance. A
mechanism for sharing secrets between multi-
ple devices using QR codes under adversarial
conditions is proposed by Blochberger [2]. The
attacker could guess the type of the value by in-
ferring it from the value’s size, e. g., if the value
is about 700 MiB it could be a CD image.

Neither the service operator nor anyone else ex-
cept who is in possession of the cryptographic
keys can link two files. The identity of the
user is protected by the anonymization network.
The attacker can de-anonymize a single user by
compromising the availability of a single key-
value pair, presuming that the user complains
about the reduced availability of the service. If

enough users use the service, this attacks be-
comes infeasible. The protected name i′ has a
length of 256 bit. The probability for a collision,
meaning H(i1) = H(i2), is 50 % after 2128 tries
(birthday paradox), making brute-force infeasi-
ble for a computationally limited attacker.

5.2 Integrity

The attacker can change key-value pairs. The
change will be detected by the user, as the
authenticated encryption scheme used will fail
to decrypt if the ciphertext has been modi-
fied. Assuming that the attacker knows that
two key-value pairs (Hp(i1), c1) and (Hp(i2), c2)
belong to the same user, he could swap the val-
ues of these two pairs, so that (Hp(i1), c2) and
(Hp(i2), c1). Since protected names are globally
unique, it is ensued that i1 6= i2. The client can
now decrypt i′, n, m = E−1

s (c2) and will detect
the change since i1 6= i′4. If the attacker swaps
values of two different users, the values cannot
be decrypted since different secret keys are used,
hence the modification will be detected.

5.3 Availability

As the attacker controls the service, he can
influence availability at his will.

6 Limitations

The key-value storage presented here has some
limitations as well.

First, payment mechanisms have not been taken
into account. Since the service operator cannot
link files to users, he cannot simply calculate
if paid-for quotas have been reached. In order
to operate this service commercially and to
somehow limit users from using too much space
for free, future work should investigate how
this is possible to achieve in a privacy-friendly
manner.

Second, the service does not allow users to share
values with one another. Currently there is no

4Note that this kind of integrity protection is not yet
implemented at the time of writing: https://github.
com/AppPETs/PrivacyKit/issues/8

4

https://github.com/AppPETs/PrivacyKit/issues/8
https://github.com/AppPETs/PrivacyKit/issues/8


way of restricting access to a value, e. g., to
providing read-only access to another user.

7 Conclusion

A key-value storage was presented, that ensures
the confidentiality and integrity of user data
stored. The realization follows the data mini-
mization principle, so that only data required
for fulfilling the service’s functionality can be
accessed by the service operator.

Acknowledgements

This work was done in the AppPETs project5

and supported by the BMBF.

References

[1] Apple Inc. iOS Security – iOS 11.4.
White paper. Aug. 2018. url: https://
www . apple . com / business / docs / iOS _
Security_Guide.pdf.

[2] Maximilian Blochberger. Sharing Secrets
between Mobile Devices. White paper. Aug.
2018. url: https : / / github . com /
AppPETs/SecretSharing-Whitepaper.

[3] Andriy Panchenko et al. “SHALON:
Lightweight Anonymization Based on
Open Standards.” In: ICCCN. IEEE Com-
puter Society, 2009, pp. 1–7.

[4] Jean-François Raymond. “Traffic Analy-
sis: Protocols, Attacks, Design Issues, and
Open Problems.” In: Workshop on Design
Issues in Anonymity and Unobservability.
Vol. 2009. Lecture Notes in Computer Sci-
ence. Springer, 2000, pp. 10–29.

5AppPETs – Datenschutzfreundliche Smartphone An-
wendungen ohne Kompromisse: http://app-pets.
org

5

https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://github.com/AppPETs/SecretSharing-Whitepaper
https://github.com/AppPETs/SecretSharing-Whitepaper
http://app-pets.org
http://app-pets.org

	Introduction
	Attacker Model
	Cryptographic Client-separation
	Encryption of Values
	Personalization of Names
	Process

	Demonstrator
	Service
	Client Framework
	Demo Application

	Security Evaluation
	Confidentiality
	Integrity
	Availability

	Limitations
	Conclusion
	References

