
On the Detection of Applications in Co-Resident Virtual
Machines via a Memory Deduplication Side-Channel

Jens Lindemann
Security and Privacy Group

Department of Computer Science
University of Hamburg, Germany

lindemann@informatik.uni-hamburg.de

Mathias Fischer
Security and Privacy Group

Department of Computer Science
University of Hamburg, Germany

mfischer@informatik.uni-hamburg.de

ABSTRACT
Nowadays, hosting services of multiple customers on the
same hardware via virtualiation techniques is very common.
Memory deduplication allows to save physical memory by
merging identical memory pages of multiple Virtual Ma-
chines (VMs) running on the same host. However, this
mechanism can leak information on memory pages to other.
In this paper, we propose a timing-based side-channel to
identify software versions running in co-resident VMs. The
attack tests whether pages that are unique to a specific soft-
ware version are present in co-resident VMs. We evaluate
the attack in a setting without background load and in a
more realistic setting with significant background load on
the host memory. Our results indicate that, with few repe-
titions of our attack, we can precisely identify software ver-
sions within reasonable time frames and nearly independent
of the background load. Finally, we discuss potential coun-
termeasures against the presented side-channel attack.

CCS Concepts
•Security and privacy → Side-channel analysis and
countermeasures; Virtualization and security; Vul-
nerability scanners; •Computer systems organization
→ Cloud computing;

Keywords
security, side-channel attack, virtualization, cloud comput-
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1. INTRODUCTION
Our society relies more and more on the availability of Inter-
net services. These services are increasingly provided by vir-
tualised servers operated by cloud providers in their server
infrastructures.

Attacks on cloud providers take place all the time. However,
only few of them cause real damage. Mostly, such successful
attacks are prepared by extensive reconnaissance in which
attackers actively scan their targets. Obtaining information
about the software configuration of other VMs, other users
on the same VM, or the host operating system allows them

Copyright is held by the authors. This work is based on an earlier work: SAC’18
Proceedings of the 2018 ACM Symposium on Applied Computing, Copyright
2018 ACM 978-1-4503-5191-1. http://dx.doi.org/10.1145/3167132.3167151

to specifically exploit security vulnerabilities known to exist
in the identified software versions. Conducting vulnerability
scans in a provider’s infrastructure from virtual machines
is forbidden by the acceptable use policies of many cloud
service providers [13]. Furthermore, when such scans are
conducted via the network, they can be easily detected, e.g.
by an Intrusion Detection System (IDS). However, so-called
side-channel attacks, which do not use standard communi-
cation paths, can reveal information on a target system by
evading standard detection mechanisms at the same time.

Such side-channel attacks are a danger especially in virtu-
alised environments (e. g. [9, 11]), in which multiple virtual
machines share the same hardware. One type of side-channel
attacks in virtualised environments is based on the memory
deduplication mechanism, which identifies and merges iden-
tical memory pages. This can save large amounts of physical
memory [4, 27]. However, this mechanism can adversely af-
fect the confidentiality of data in virtual machines. Suzaki
et al. [24] have shown that it is possible to detect a software
running within another VM on the same host by writing a
copy of the binary into memory. This copy will then be dedu-
plicated by the hypervisor. When this deduplicated copy of
the binary is overwritten, this will take longer than overwrit-
ing random and non-deduplicated data. Thus, this gives an
attacker the information that another copy of the binary is
present on the host. A vulnerable software version identi-
fied in another VM does not lead to a direct attack path, as
the IP address will normally be unknown and would have
to be obtained using another method. If the IP address is
known to the attacker, however, knowing the software ver-
sion being executed enables the attacker to launch an attack
specifically targeted at vulnerabilities in this version. Also,
a vulnerable hypervisor version or a vulnerable software ver-
sion being executed by another user on the same VM will
be directly attackable.

The main contribution of this paper is a novel side-channel
attack based on memory deduplication that has already been
published by us as a conference paper [14]. The attack al-
lows a curious attacker controlling a VM to gain informa-
tion about the software configuration of (a) other co-located
VMs, (b) other users of the same VM or (c) the host op-
erating system. Our attack is based on identifying memory
pages of a software version that are unique across all other
versions of that software. Once such signature pages have
been identified, their existence in co-resident VMs can be
easily tested by loading just these pages into the memory of



the attacker VM. Thus and contrary to related work, our at-
tack does not presume to load a software binary completely.

Our evaluation results indicate that we can distinguish soft-
ware versions to the precision of the distribution patch level.
Our attack is faster than other attacks that test whether in-
dividual pages have been deduplicated as timing differences.
It requires fewer measurements to detect versions that have a
large number of unique pages. Furthermore, memory activ-
ity has an impact on the number of measurements required:
without load, fewer measurements are required to achieve a
certain level of accuracy. For example, to achieve an accu-
racy of more than 99.9 % in the detection of the software
version with background activity on the host, at least three
measurements with a minimal signature size of five pages are
necessary. Such an attack would take at least 32 minutes.

As previous work did not analyse the impact of differences
in software versions and the underlying operating system,
we present an analysis of the effectiveness of such an attack
across different software and operating system versions. We
found that software binaries of the same upstream release
share almost no common pages across different Linux dis-
tributions. Furthermore, we have analysed the potential for
memory savings by deduplicating memory pages containing
executable code across different OS and software versions.

Compared to our former work [14], we have improved our
attack code by eliminating some of the noise observed in the
measurements. As a result, we require fewer measurements
to achieve the same level of accuracy in detecting application
versions. We also evaluate the attack under more realistic
conditions, i. e. with background load on the host. Further-
more, we more extensively discuss countermeasures against
the identified side-channel attack.

The remainder of this paper is structured as follows: In Sec-
tion 2 we discuss background information and related work.
Section 3 describes our side-channel attack. In Section 4, we
evaluate effectiveness and efficiency of the attack. Section 5
presents potential countermeasures and Section 6 concludes
the paper.

2. BACKGROUND AND RELATED WORK
In this section we first explain the concept of memory dedu-
plication as well as its implementation in popular hyper-
visors. Then, the attacker model is presented, before we
discuss how executable files are loaded on Linux. Finally,
we will discuss related work.

2.1 Memory Deduplication
Memory deduplication is a technique for saving physical
memory on a computer. It is often deployed on hosts for
virtual machines as a cost-saving measure. The memory of
a computer is organised by the operating system as a set
of memory pages M. Typically, the size of a memory page
pi ∈M is 4 096 bytes. Every memory page resident in phys-
ical memory will consume these 4 096 bytes. Memory dedu-
plication takes advantage of the fact that there are often sets
Di of multiple identical pages pi = pj ∈ M. To save mem-
ory, all but one page pm ∈ Di will be removed from the phys-
ical memory and all memory mappings ∀pi ∈ M : pi = pm

updated to point to pm instead. Subsequently, when a page
pi ∈ Di is to be changed, the deduplication mechanism
copies it to a different memory region so that it can be mod-
ified without affecting the other copies of the page.

Note that only pages actually resident in memory can be
deduplicated, whereas pages that are swapped out cannot
be deduplicated. This implies that it may not be possible
to detect some pages of a file by means of a deduplication
side-channel attack, despite the file being loaded into the
virtual memory of the host.

Figure 1 shows an example of memory deduplication. Let us
assume two VMs running on a host. Each VM is assigned
four pges of virtual memory. Without deduplication (Fig-
ure 1a) every page in the virtual memory of the two VMs
are mapped to exactly one distinct page in physical mem-
ory. When deduplication is activated (Figure 1b), it will
scan the memory and find that there are two pages of iden-
tical content. These pages are then merged into one physical
memory page, resulting in the two VMs sharing a physical
memory page.

In the following, we will describe the memory deduplication
mechanisms of the popular KVM, Xen and VMWare ESXi
hypervisors.

KVM.
The KVM hypervisor is built into the Linux kernel and uses
the “Kernel Samepage Merging” (KSM) technique [1] for
memory deduplication. The guest OSs do not have to be
modified for KSM. KSM runs in the background ans scans
the memory pages of virtual machines for identical pages,
which are then deduplicated. It will scan in specified in-
tervals. When an interval has passed, a specific number of
memory pages is scanned and, if appropriate, deduplicated.

Instead of using fixed values for interval and number of pages
to scan per interval, the ksmtuned daemon can be used [22].
It will tune the KSM configuration according to the current
memory usage on the host: The higher the memory usage is,
the more pages will be scanned per interval. When memory
usage decreases, the number of pages scanned per interval
will also be decreased. Ksmtuned also supports turning off
KSM when memory deduplication does not exceed a speci-
fied threshold.

Xen.
The Xen hypervisor provides a mechanism for sharing mem-
ory pages between VMs [5]. However, no mechanism for au-
tomatically identifying such pages is provided as part of the
hypervisor, so that this feature is of little use in practice.

However, mechanisms that enable live deduplication in Xen
have been developed by researchers. One such mechanism
is the Difference Engine proposed by Gupta et al. [8]. Sim-
ilar to KSM, it periodically scans the memory for shareable
pages. Besides deduplicating identical pages, it also sup-
ports sharing similar pages. This is achieved by storing
the difference between the deduplicated pages and patch-
ing the appropriate page when it is being accessed. Note
that, unlike deduplicating identical pages, this also causes
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Figure 1: Memory deduplication

an overhead when pages are merely being read. In addition,
it compresses unshareable pages that are not being used fre-
quently. Compared with techniques that work on identical
pages only, Difference Engine achieves higher memory sav-
ings. While the researchers originally published their code
online, the project now seems dead and the repository is no
longer available.

Another mechanism is Satori [18]. Unlike most other dedu-
plication mechanisms, it requires modifications to the guest
OS. Instead of periodically scanning the full VM memory for
shareable pages, it checks whether a page can be dedupli-
cated when it is being loaded. This means that even pages
that only remain in memory for a short period of time can
be deduplicated. However, pages that are changed to be-
come identical to another page after they have initially been
loaded into memory will not be detected. Satori allows a
guest VM to specify pages that may not be shared. This im-
plies disabling deduplication for specific memory areas and
will eliminate both memory savings as well as memory tim-
ing side-channels in respect to these pages. We were unable
to find a publicly available implementation of Satori.

VMWare ESXi.
VMWare ESXi uses its own deduplication mechanism, which
has been described by Waldspurger [27]. Similar to the KSM
mechanism used by KVM, the memory of guest VMs is regu-
larly scanned for duplicate pages to deduplicate these. Mod-
ifications to the guest OS or the disk images used by the VM
are not necessary.

2.2 Attacker Model
Our assumptions about the attacker’s capabilities are as fol-
lows: A memory deduplication side-channel attack takes
place on a host h that hosts a set of virtual machines M .
We denote the set of all versions of an application i as Ai.
Individual versions are denoted as av

i ∈ Ai, where v is used
as a version identifier. Each virtual machine mk ∈M runs a
set of application versions, which are returned by apps(mk).
The attacker controls at least one virtual machine ma ∈M .

The attacker can only observe the network traffic of ma, not
that of h or any other VM m ∈ M \ ma. The attacker’s
intention is to determine a specific version av

i ∈ Ai running
outside their scope of control.

There are three possible attack scenarios:

• Inter-VM. The attacker is trying to determine av
i of

an application Ai running on another virtual machine
mv ∈ (M \ma)

• Intra-VM. The attacker does not have root access to
ma and is trying to determine av

i of an application Ai

being executed on ma by another user.

• VM-to-host. The attacker is trying to determine av
i

of an application Ai running on the host operating
system of H.

For sake of clarity, we will concentrate on describing inter-
VM attacks in the following. The mechanisms of intra-VM
and VM-to-host attacks are identical. Intra-VM attacks
will work on all hosts where inter-VM attacks are possible.
Whether a VM-to-host attack can be performed on a host
depends on whether the deduplication mechanism dedupli-
cates pages of the host OS in addition to those of the VMs.

While the operator of a VM host trying to exploit a security
vulnerability in software of a guest VM is the worst-case
attacker, we do not consider Host-to-VM attacks. As the
host has full access to the memory of all VMs on the host,
its operator has a much easier attack path than a mem-
ory deduplication side-channel attack. Furthermore, they
would also know how to communicate with an affected VM
without having to find out the IP address using a separate
side-channel.

2.3 Loading of Executables in Linux
As described in Sect. 2.1, the content of two memory pages
must be identical for them to be deduplicated. However,
the position of the page in memory is irrelevant. Thus, we
need to know the content of an executing program’s memory
pages, but not their position in memory.



Linux uses the Executable and Linkable Format (ELF) for
executable files. The current version of the standard is 1.2
[25]. ELF is also used by many other modern Unix operating
systems, such as FreeBSD and Solaris.

The data in an ELF file is organised in sections and seg-
ments. A file contains one or more segments. A segment
contains one or more sections. For executing a program,
only segments are relevant. An executable contains a pro-
gram header table describing the segments contained in the
file. For each segment, it contains information such as the
type of the segment, its position and size in the file, the vir-
tual memory address that it shall be loaded to and alignment
requirements.

In the following, we will describe how ELF executables are
placed into memory pages by the Linux kernel. The load-
ing mechanism for ELF files can be found in the source file
fs/binfmt elf.c. To load an ELF object file, the function
load elf binary is called. The function iterates over all en-
tries in the program header table. It checks whether the
corresponding segment is a loadable (PT LOAD) segment.
If it is, it calls the elf map function.

The elf map function then maps the specified segment into
memory. It maps full memory pages, even if the virtual
memory address specified in the program header table points
to a position within a page. If this is the case, the bytes
directly preceding the segment are loaded until the memory
page is filled. A similar approach is taken if the segment does
not end on a page boundary: The bytes directly succeeding
the segment are loaded until the page is filled.

2.4 Related Work
Data deduplication is similar to memory deduplication, but
aims to save disk space by deduplicating copies of identical
data in storage. It can be very effective (savings of 70 to 80
percent) when applied to images of similarly configured VM
images [12, 16]. However, its effectiveness is reduced for het-
erogeneous software configurations on the VMs [12]. Timing
side-channels also exist in data deduplication. They can re-
veal whether a file (or even a part of it) is already present
on a storage service through timing differences caused by
copy-on-write [9] or non-uploading of file contents [19]. Re-
searchers have proposed Message-Locked Encryption as a
countermeasure [2, 21].

Gruss et al. [6] demonstrate that it is possible to perform
a memory deduplication side-channel attack from within a
browser using JavaScript. Bosman et al. [3] apply this ap-
proach to the Microsoft Edge browser on Windows 8.1 and
10, which use memory deduplication by default. Their at-
tack does not require a virtualised environment, but targets
end-user computers. The authors show that it is feasible to
read arbitrary data from the target computer’s memory.

Irazoqui et al. [11] describe an approach to detect the ver-
sion of a cryptography library executed on a co-resident VM.
They make use of a Flush+Reload attack on functions char-
acteristic to a library. This leads to a difference in reload
time if the function has been called in another VM after
the attacker has flushed it from the cache. For the attack
to work, the page containing the attacked function needs to
be deduplicated between the attacker VM and the victim

VM. While their attack has a similar aim as ours, it uses
a different technique that requires manual analysis of the
attacked libraries to find a suitable function. Automatically
generating signatures for this type of attack would be hard
as the targeted function needs to be loaded into the cache by
the victim, which would typically be triggered by its execu-
tion. Thus, signatures would need to take into account how
likely a function is to be executed. If an automatic signature
generation mechanism targeted a function that is unique for
an application, but rarely executed (e. g. handling of an
uncommon error), this would be of little use for detecting
an application. Furthermore, as their attack targets a sin-
gle function in the library, it will be unable to distinguish
versions in which the analysed function is identical. This
implies that different functions may have to manually be
found to distinguish different pairs of versions.

Gulmezoglu et al. [7] describe a cache-based side-channel at-
tack to detect applications in co-resident virtual machines.
They use machine learning to train a classifier on the cache
usage patterns of applications. While their attack has the
advantage of not requiring memory deduplication to be ac-
tive, it is unclear whether it can be used to exactly identify
the executed version of an application.

Xiao et al. [28] show that memory deduplication can be used
to establish a covert channel for communication between two
(collaborating) co-resident virtual machines. Furthermore,
they show that memory deduplication can be used to mon-
itor the integrity of a VM’s kernel from the outside.

Suzaki et al. [24] first described a side-channel attack ex-
ploiting timing differences caused by the KSM deduplication
mechanism used in KVM. They demonstrate that it is pos-
sible to detect applications running in a co-resident VM.
However, they only analyse a single version of each tested
application. The authors do not analyse whether it is pos-
sible to tell different versions of an application apart. They
used the full binary as a signature, ignoring whether pages
may also be present in other versions of the applications or
even other parts of the system.

Owens and Wang [20] describe an approach to detect the
operating system running inside another virtual machine
hosted on the same VMWare ESXi host through a mem-
ory deduplication side-channel attack. They generate their
signatures by setting up the targeted OS versions, captur-
ing memory images of the running system and then filtering
out the memory pages unique to that OS version. However,
their approach was only tested on four different major re-
leases of Windows and two of Ubuntu Linux. The impact
of the frequently published patches for these operating sys-
tems on the accuracy of their detection mechanism was not
evaluated.

In summary, most other side-channel attacks on memory
deduplication concentrate on either revealing data in the
memory of another VM or on establishing a covert com-
munications channel between two VMs. While some ap-
proaches are concerned with detecting the presence of ap-
plications, they do not thoroughly study detecting specific
versions. The work of Owens and Wang [20], who aim to
detect versions of operating systems, is the closest to ours.



3. MEMORY SIDE-CHANNEL ATTACK
Our memory deduplication side-channel attack is based on
timing measurements and can reveal whether pages charac-
teristic for a software version have been deduplicated. In
the following, we will describe the general approach an at-
tacker would take to identify software versions running in
other VMs. We will also describe how to find characteristic
memory pages that can serve as a signature for a specific
software version.

3.1 Attack Procedure
Memory deduplication opens up a timing side-channel that
can reveal to an attacker that a memory page holding a
certain content is present on the host, e. g. within another
virtual machine. A deduplicated page needs to be copied
before it can be modified. Thus, there is an additional delay
in modifying such a page compared to modifying a non-
deduplicated page. This delay can be used to detect the
presence of applications [24] or other data [3] in other VMs
on a host. Note, however, that it will not allow an attacker
to find out in which particular other VM the application is
running.

We define pages(av
i ) to return all pages of av

i excluding du-
plicate pages within the binary and pages containing only
zero or one bits. Each virtual machine mj ∈ M is run-
ning a set of applications Rj . An attacker is interested in
whether an application version is present in another VM,
i. e. av

i ∈ apps(M \ma). We define pages(mj) as the set of
all memory pages of a VM mj , i. e.

pages(mj) ⊇
⋃

av
i ∈Rj

pages(av
i ) (1)

The attacker first needs to establish a deduplication and a
non-deduplication baseline. To obtain the non-deduplication
baseline, the attacker fills a number of memory pages equal
to the number of pages they wish to test with random data,
so that

pages(ma) ∩ {∪m∈M\(ma)pages(m)} = ∅ (2)

It can be assumed that randomly-generated pages do not
get deduplicated as it is extremely unlikely that an identical
copy is present on the host or in another VM. The attacker
then measures the time it takes to overwrite these pages as
a baseline for non-deduplicated pages.

The assumption is that we can identify a particular appli-
cation version based on a subset of pages of that appli-
cation version av

i that are unique across all different ver-
sions of it. We refer to this subset of pages as a signature
sig(av

i ) (cf. Sect. 3.2 for details on signature derivation).
The attacker writes the signature of an application they be-
lieve to be present in another VM to the memory of their
VM ma. If another VM mv is executing av

i , this implies
{Ma ∩Mv} ⊇ sig(av

i ), which means that these pages can
be deduplicated. The attacker then needs to wait for dedu-
plication to take place. Afterwards, the attacker modifies
the pages that serve as signature and measures the time
needed for overwriting exactly these pages.

This measurement can be compared to the baselines. A
threshold for classifying measurements into deduplicated and

non-deduplicated needs to be determined. If the measure-
ment is significantly higher than the non-deduplicated base-
line and close to the deduplicated baseline, the attacker can
infer that the pages were most likely deduplicated, so that
another copy of them as part of application version av

i is
present in another VM. However, if the measurement is very
close to the non-deduplicated baseline, the pages have not
been duplicated and have been modified directly. This could
mean that another copy of the pages was indeed not present
on the host, but there is a small probability that a copy of
the pages is present on the host, but has not been scanned
by the deduplication mechanism yet, e. g. due to the dedu-
plication mechanism being configured to only activate itself
when the memory of the host is almost full. An easy and
naive classification rule would be to use the mean of the two
baselines as a threshold, which works well enough if multiple
pages are being measured at once (cf. Sect. 4.7).

To use this side-channel to detect the presence of application
version av

i on a host, an attacker would act as follows:

1. Establish baselines by writing length(sig(av
i )) pages

containing random information to the memory of ma

and measuring the time it takes to overwrite this ran-
dom information (non-deduplicated baseline). Further-
more, write two copies of randomly generated pages
into the memory of ma and overwrite one of the copies
(deduplicated baseline). The baselines should be based
on multiple measurements.

2. Determine the classification threshold based on the
baselines obtained in the previous step.

3. Write sig(av
i ) into the memory ma.

4. Wait for deduplication to happen. The correct waiting
time depends on the configuration of the host’s dedu-
plication mechanism.

5. Overwrite the signature, while measuring the time this
operation takes to complete.

6. Repeat steps 2 to 4 until a sufficient number of mea-
surements has been taken.

7. Calculate the mean of the measurements taken and
compare it to the classification threshold.

If the attacker is not interested in particular pages, but
in identifying pages that are unique to an application ver-
sion (aka signature), the full set should be written at once.
The timing differences observed between overwriting dedu-
plicated and non-deduplicated pages will be more pronounced
if multiple pages are being checked at the same time. Thus,
an attacker can identify a program running on another VM
with fewer measurements. This implies that the signatures
for a software version should consist of as many pages unique
to this version as possible.

As it is necessary to repeat the measurements several times,
and each measurement comes with a delay, the attack takes a
relatively long time. However, if the signatures to be checked
are disjunct, i. e. they do not contain any pages that are
also present in other signatures, multiple signatures can be
checked in parallel. To avoid measurements influencing each
other, the overwriting operations should not overlap. It is
not a problem to perform an overwriting measurement on



one of the signatures while other signatures are in the wait-
ing phase, though.

The configuration of the deduplication mechanism will have
an impact on the effectiveness of any memory deduplica-
tion side-channel attacks: If the interval between scans is
long, potential attackers would be slowed down at the cost
of decreased memory savings. If, on the other hand, the
activation threshold is set relatively high, attacks will not
be possible at all as long as the host’s memory load remains
beneath the threshold.

3.2 Signatures for the Timing Side-Channel
To be able to reliably detect a software version, we need to
build signatures for each version. A signature should contain
only pages unique to the respective version, as including
pages that can also be found in other versions may lead
to false classifications. This also holds true for pages of
completely different applications. Due to the size of a page,
it is however very unlikely that an identical page can also
be found in a different application.

To derive a signature for a version of an application binary,
we start with all its pages and then remove the following
types of pages:

1. Internal duplicates because a duplicate page within
the signature itself would be sufficient to trigger dedu-
plication of these pages.

2. Pages containing only zeroes or ones, as another
copy of these is very likely to be present on the host
even if the surveyed application is not being executed
in another VM at all.

3. Pages present in other versions, as these are un-
suitable for distinguishing the version.

Any of these pages can be deduplicated without the probed
version being present in another VM. Therefore, they must
be removed to avoid false positives. In summary, the signa-
ture for an application version av

i is generated as follows:

sig(av
i ) = pages(av

i )−
⋃

a∈{Ai\av
i }

a (3)

Our approach for deriving signatures is similar to the one
for detecting operating systems by Owens and Wang [20].
In their approach, they capture memory images of differ-
ent OSs while executing them. Then, they derive signa-
tures from these that contain pages unique among their OS
dataset. Similar to their work, we aim to find memory pages
that are unique to an application instead of an OS version
to use them as signature. However, we consider the pages of
the application binary only and can ignore all pages contain-
ing application data pertaining to the runtime state. Thus,
any pages that do not contain executable code, such as data
pages, are ignored. These pages may differ between two
instances of an identical binary, e. g. due to a different run-
time state, or may be identical for two different versions of a
binary, e. g. due to a similar runtime state saved in a mem-
ory structure that has not been changed between versions.
Thus, they are not well-suited for detecting the application
version being executed.

Focusing on only the pages of the application binary renders
our technique much more efficient compared to the work of
Owens and Wang. These binary pages are the only pages
that can safely be assumed to reside in memory on all sys-
tems executing it. Moreover, binaries need not be executed
to generate signatures in the form of unique memory pages.
Thus, in the following, we can use these signatures to specif-
ically test via our side-channel attack described in Section
3.1 if there is an application running that matches the sig-
nature, i. e. contains the signature pages.

In the next section, we summarise our findings in evaluating
the proposed side-channel attack.

4. EVALUATION
In this section, we first present the tools and datasets that
we have created for our experiments. Also, we describe ex-
periments that indicate that a timing side-channel exists
that can reveal whether pages of an application are present
within another VM. We then present experiments that in-
dicate that versions of the same application are different
enough from each other to detect them with this method.
Furthermore, our experiments indicate that releases of the
same upstream version from different distributions can easily
be distinguished, too. We also analyse the impact of chang-
ing the page size on the deduplication of pages containing
executable code. Finally, we present an analysis on the com-
plexity of our attack before discussing the limitations of our
approach.

4.1 Signature Generation and Measurements
To derive signatures and enable the experiments described
in the reminder of this paper, tools have been developed
that allow the automatic comparison of a large number of
versions of a binary1.

To analyse a software, we first need to obtain its different
versions. Then, the main binary has to be extracted from the
downloaded packages. To this end, shell scripts have been
developed that can extract the binaries from RPM and deb
packages. The scripts can easily be adapted to each appli-
cation and distribution and will then process a large range
of versions, as the location and name of a binary within the
package rarely changes. The scripts will place the extracted
binaries into a directory structure that can be processed by
our analysis tool.

The main analysis tool is written in Java and can process
ELF binaries, but can easily be extended to other executable
formats as well. It supports two modes of analysis: First, all
versions of a binary can be compared with each other to
determine the number of matching pages between each pair
of versions. Results will be output as a csv file. Second, the
software can output the signature for each version, which
will contain all pages unique to that version (cf. Sect. 3.2).
Statistics about the signatures will also be created and saved
in a csv file. These include the signature sizes, the number
of internal duplicates, the number of pages that can also be
found in other versions, and the number of pages containing

1The code of our tools is available at
https://github.com/jl3/memdedup-app-detection.



only zeroes or ones. The page size used by the tool can be
configured freely.

Furthermore, two C programs have been developed to per-
form timing measurements. The first one loads signature
pages into memory and measures the time it takes to over-
write them after a specified amount of time has passed. Mea-
surements will be output to the console and logged into a
file. This tool has been improved in comparison with the
version used in our former work [14]. The old version was
susceptible to noise from disk I/O, which has been removed
by pre-caching the data that is to be loaded into memory
when overwriting. The second one loads signature pages into
memory aligned to page boundaries to enable experiments
that do not use a running executable.

4.2 Datasets
We created three datasets for our experiments: The first
one contains all Apache web server releases for Debian on
the x86 64 platform and the second one all SSH daemon
(sshd) releases. The third dataset contains releases of sshd
7.9p1 for different distributions. Our datasets consist of the
following application versions:

• The Apache-Debian-x86 64 dataset consists of all
160 Debian releases of Apache available for the x86-64
platform and includes versions from 2.2.11-5 to 2.4.37-1.

• The sshd-Debian-x86 64 dataset consists of all 211
Debian releases of sshd available for the x86-64 plat-
form and includes versions from 4.2p1-7 to 7.9p1-4.

• The sshd-crossdist dataset consists of 10 package
versions of sshd 7.9p1 from Arch Linux, Debian, Fe-
dora, Mageia and Ubuntu. Multiple revisions are in-
cluded for Debian (3) and Fedora (4).

Our datasets contain only the main executable of each appli-
cation (httpd for Apache, sshd for the SSH daemon). For the
surveyed applications, these are typically the only executa-
bles that will be running as a daemon at all times. While
both applications include additional executables (e. g. ssh-
keygen for generating SSH keypairs), these would normally
not be running long enough for the described attack to be
possible. In case of packages containing multiple executables
to be run constantly (e. g. as a daemon), all these executa-
bles should be included when generating signatures.

The packages for the Debian-based datasets were obtained
from the snapshot archive2, which provides historic pack-
age versions. A similar repository of old package versions is
available for Fedora3, which retains old versions of binary
packages and keeps them publicly available.

Unfortunately, most distributions, among them openSUSE,
OpenMandriva, Ubuntu and Arch, provide only very recent
versions of the binary packages. This makes it hard to create
a dataset that can be applied to other distributions as well.
For the cross-distribution dataset, due to the lack of older
versions of binary packages for many distributions, we had
to use the recent upstream version 7.9p1 of sshd, which was

2http://snapshot.debian.org
3https://koji.fedoraproject.org/koji/
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available for download for a variety of distributions at the
time of dataset creation.

4.3 Feasibility of the Side-Channel
In the following, we will show that a timing side-channel in
memory deduplication exists that can be used to reveal the
presence of memory pages in another VM or on the host.

For the experiments described in this section, two virtual
machines ma and mv are used. The host is an Intel Core i7-
4790 with 16 GiB RAM running KVM and KSM on Fedora
26. First, a number of pages is loaded into the memory of
mv. Then, the same pages are loaded into ma. After that,
we wait for deduplication to take place and overwrite the
pages in the memory of ma, measuring the time this takes.

Figure 2 shows the write times to sets of non-deduplicated
and deduplicated pages depending on the number of pages in
the respective application. All results in the figure are aver-
aged over 1 000 measurements each. In the non-deduplication
case, the pages on ma and mv are of identical size, but have
different contents, so that no deduplication can take place.
In the deduplication case, the pages on ma and mv are iden-
tical, so they can be deduplicated.

Write times to deduplicated pages are higher than to non-
deduplicated pages. For both types of pages, write time in-
creases linearly with the number of pages overwritten. The
gap in write times between non-deduplicated and fully dedu-
plicated sets of pages increases when writing to a larger num-
ber of pages. This implies that when we measure the time to
overwrite a larger number of pages at once, it will be easier
to determine whether these pages have been deduplicated
previously.

Figure 3a shows a histogram of 1 000 write times each for a
single deduplicated or non-deduplicated page without back-
ground load on the system. As expected, the write times
to non-deduplicated pages are typically lower than those
to deduplicated pages. However, when overwriting a single
page, some of the slower measurements for non-deduplicated
pages fall into the same range as some of the faster measure-
ments for deduplicated pages. This implies that performing
a single measurement only will not be sufficient to reliably
distinguish the two cases and thus determine whether an-
other copy of the page is present on the host. Figure 3c



shows the write times with background load, generated by
running six instances of memtester 4.3.0 on the host while
performing the measurements. While write times to non-
deduplicated pages are still lower on average than those to
deduplicated pages, measurements for both are spread out
over a significantly larger range of times and overlap more.
This makes the two cases harder to tell apart.

Figure 3b shows a histogram of 1 000 write times each for
100 deduplicated or non-deduplicated pages without back-
ground load on the system. As with the single pages, over-
writing 100 deduplicated pages takes longer than overwriting
100 non-deduplicated pages. However, the measurements do
not overlap. This implies that we could reliably distinguish
whether a 100-page signature is present on the host based
on a single measurement only in our test setup. Figure 3d
shows shows the write times for 100 pages with background
load. As for single pages, these are spread out over a wider
range of times. However, they do not overlap and could still
be distinguished reliably based on a single measurement.

4.4 Cross-version Similarities
We now present our analysis on cross-version similarities in
the Apache-Debian-x86 64 and sshd-Debian-x86 64 datasets.

For that, we directly compare each version to every other
version available. This direct comparison shows how many
pages are identical among two specific versions. The more
pages are identical, the harder it will be for an attacker to
distinguish these versions from each other using our side-
channel attack. However, a larger number of identical pages
also implies that deduplication can save more memory.

Furthermore, we determine the number of pages that can
be used as signature for each application version in our
datasets. We also analyse how many pages have not been
used for deriving signatures (cf. Section 3.2).

Figure 4a shows the number of matching pages between all
versions for the Apache-Debian-x86 64 dataset. Figure 5a
shows the number of matching pages between all versions
in the sshd-Debian-x86 64 dataset. Each row and column
corresponds to one version, namely from old versions on the
top left to new versions on the bottom right. The colour
at the intersection of the row corresponding to version vr
and the column corresponding to version vc represents the
number of pages in the binary of vr that are also present
in the binary of vc. The bright diagonal line running from
the top left to the bottom right represents the comparison
of a version with itself (vr = vc) and shows the size of the
respective version’s binary in pages. It can be seen that
newer versions of the binaries are larger than older ones.

The results indicate that some versions form clusters, whose
binaries are relatively similar to each other. For the Apache
dataset, these clusters correspond to multiple Debian revi-
sions of an upstream version. An example of a range of ver-
sions whose binaries are very similar to each other is 2.2.16-1
to 2.2.16-6. However, the backport revisions corresponding
to this upstream version are completely different and share
only a single page with the non-backport versions. Further
examples of similar binary versions are 2.2.22-6 to 2.2.22-
13+deb7u2 and 2.4.10-1 to 2.4.10-9. While all versions in
these clusters share more than 20 pages with each other,

both clusters contain inner clusters of versions even more
similar to each other. For example, while the versions in the
former cluster all share at least 28 pages with each other,
versions 2.2.22-7 to 2.2.22-10 share almost all their pages
with each other. Figure 4b gives a detailed view of this clus-
ter and shows how many of the pages in version 2.2.22-9 can
also be found in each neighbouring version.

The clusters in the sshd dataset are similar in size and are
also restricted to versions that have been released close to
each other. Interestingly, while most of these clusters also
contain only different Debian revisions of the same upstream
software version, the sshd dataset – unlike the Apache dataset
– contains a few clusters stretching across different upstream
versions. While most of these span versions corresponding to
directly adjacent upstream releases (e. g. 5.4p1 and 5.5p1),
there are also clusters of slightly more distant versions. One
notable example of this is the cluster comprising versions
7.2p2-6 to 7.2p2-8 as well as 7.4p1-1 to 7.4p1-5, which are
more similar to each other in terms of memory pages than
to the versions between. A detailed view of this cluster is
shown in Figure 5b.

The results indicate that almost no similarities exist between
binaries of packages across different upstream versions. The
results also indicate that memory savings by means of dedu-
plicating binaries of Apache on Debian x86-64 can only be
achieved if multiple instances of the same upstream version
and ideally the same or a very close Debian revision are be-
ing executed on the host. For sshd, limited sharing potential
exists between releases of some close upstream versions.

Figure 6a shows how many memory pages can be used in a
signature for a binary of the Apache-Debian-x86 64 dataset.
The values are calculated on the assumption that signatures
shall be used to identify not only the upstream version, but
also the exact Debian patch level of the binary. The figure
also shows how many pages of the binary are contained more
than once within the binary or contain only zeroes or ones.
It is also shown how many of the remaining pages are also
contained in other versions of the binary. The remaining
pages can be used as a signature. Figure 6b shows the results
for the sshd-Debian-x86 64 dataset.

The results show that the size of the signature is large for
many of the versions surveyed as they contain many unique
pages. These versions can be precisely identified using our
attack.

However, the size of the signature is small for many other
versions. Due to the timing difference observed in a memory
deduplication attack being far less pronounced for shorter
signatures, it will be hard to identify these versions to the
precision of a specific Debian revision. Signature size can
be increased by grouping some of the affected versions with
neighbouring versions and by creating a signature that de-
scribes the group. This reduces the precision of the version
identification, but will make the memory deduplication at-
tack easier to perform.

4.5 Inter-distribution Similarities
We now analyse whether signatures derived from the bina-
ries of one Linux distribution can also be used to detect the
version of the same software on another distribution. To
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Figure 3: Histogram of write times (in microseconds) to deduplicated and non-deduplicated pages

this end, we compared binaries of the same software version
from packages of several distributions in the same way as
described in Sect. 4.4. Our experiments are based on the
sshd-crossdist dataset.

Figure 7 shows the number of duplicate pages between the
different binaries. It can be seen that the binaries dis-
tributed by Debian are very similar to each other. Fur-
thermore, the Fedora releases are relatively similar to each
other. We found release 7.9p1-1 for Fedora 29 to be more
similar to 7.9p1-1 for Fedora 30 than to the 7.9p1-2 releases
for both Fedora 29 and 30. The Debian and Ubuntu re-
leases share five to seven pages with each other. All other
cross-distribution pairs of releases exhibit no similarities.

4.6 Influence of Page Size
In the following, we will present an analysis on the influ-
ence of changing the page size on the effectiveness of our
attack and the memory saving potential of deduplicating ex-
ecutable code. To analyse whether decreasing the page size
from the standard of 4 096 bytes increases the proportion of
binaries that can be deduplicated, we analyse the number of
matching pages across versions of the Apache-Debian-x86-
64 dataset for non-standard page sizes in the same way as
described in Sect. 4.4.

The results of the experiment are shown in Figure 8. We
divide all pairs of versions into two categories: high-sharing
pairs (≥ 5% of pages shareable) and low-sharing pairs (< 5%

of pages shareable). The results indicate that reducing the
page size increases the percentage of shareable pages for
pairs of versions that were already similar at standard page
size. However, sharing opportunities remain almost un-
changed for lower page sizes.

4.7 Attack Complexity
We will now analyse how long it takes to perform our attack.
The duration for a successful run of our side-channel attack
depends on the configuration of the deduplication mecha-
nism and on the desired accuracy of the results.

How long it takes to perform a single measurement is defined
by the time an attacker has to wait for deduplication to take
place, which depends on how long the deduplication mecha-
nism requires to scan the complete memory. In its standard
configuration on Fedora 26 and RHEL 7.4, the ksmtuned
daemon, which automatically configures KSM (cf. Sect. 2.1)
according to memory usage, scans at least 1/65536 of the
physical memory, i. e. it will take at most 655.36 seconds
until all of a machine’s memory has been scanned. For the
remainder of this section, we will assume this as the time an
attacker has to wait for deduplication to take place.

In the following, we want to establish which accuracy can
be achieved depending on the signature size and the num-
ber of measurements performed (i. e. the time needed for
the attack). As in Sect. 4.3, our test setup includes two
VMs ma and mv. We first created a training dataset that
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Figure 4: Cross-version similarities – Apache-Debian-x86 64 dataset

was used to determine the classification threshold. As in a
real attack (cf. step 1 in the attack procedure in Sect. 3),
we loaded n pages into the memory of ma. As the con-
crete content of the pages is irrelevant for this experiment,
pages were generated randomly. Then, we loaded the same
n pages into memory again as well as n pages filled with
different data. After waiting for the deduplication to occur,
we measure the time it takes to overwrite each set of pages.
This process is performed 1 000 times, so that we have 1 000
training measurements for both the deduplicated and the
non-deduplicated case. Note that this number of training
measurements is not unrealistic in an actual attack, as mea-
surements can be taken in parallel if different sets of data
are used. The approach for creating our test dataset is iden-
tical except that the pages that are to be deduplicated are
loaded into the memory of mv (and later into ma’s memory
only once).

We perform our experiments in two scenarios: In the first
scenario, only ma and mv are active on the host system. The
VMs run only the OS and our analysis tools. The host was
only running the base system and the two VMs. No further
VMs were active. This ensures that there is relatively little
load on the memory of the host that is not attributed to the
measurements themselves.

In the second scenario, we simulate background memory ac-
tivity on the host. As in the first scenario, the attack (ma)
and victim (mv) VMs were active and no further VMs were
active. However, in addition to the base system and the two
VMs, the host was concurrently executing six instances of
memtester 4.3.0. Each instance was configured to use 1 GiB
of memory and run in an infinite loop. This ensures that
there were constantly read and write accesses being made
to the physical memory of the host.

To probe a signature, multiple measurements should be per-
formed to increase the accuracy of the results. The time this
takes for one signature depends on the desired accuracy of
the results. Figure 9a shows the impact of the number of
measurements performed and the size of the signature on the
accuracy of our version detection mechanism when there is
no background load on the system. We calculated the mean
of the training measurements for each test case to act as a
baseline for classification (cf. Sect. 3.1). For different values
of m, we then took 10 000 000 random samples of m measure-
ments each from all our test cases and checked whether the
mean of the sample was classified correctly. The accuracy
value shown is aggregated over both the deduplicated and
the non-deduplicated test case. As this classification rule is
relatively simple, the accuracy values can be considered a
lower bound of what is possible.

It can be seen that measuring multiple pages at once in-
creases the accuracy. Thus, measurements should be per-
formed based on signatures that contain all pages unique
among the different versions of that application. Also, accu-
racy increases with the number of measurements performed.
However, even a single deduplicated page in a set of non-
deduplicated page will increase the write time and can lead
to false classifications. Therefore, signatures should be as
large as possible, but not contain any pages that are also
present in other versions. In the best case, every version has
completely different pages, so that all of them can be used
as a signature.

Without background load on the host, relatively few mea-
surements are required to achieve a high accuracy even for
small signatures: For signatures of a single page, six mea-
surements were needed for an accuracy of ≥ 99.9%. For
larger signatures, fewer measurements were needed to achieve
a similar level of accuracy, e. g. three measurements for sig-
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Figure 5: Cross-version similarities – sshd-Debian-x86 64 dataset

natures of two pages and two measurements for signatures
of five pages or more.

Under load, the number of measurements required to achieve
a certain level of accuracy increases, as shown in Figure 9b.
In our experiments, nine measurements were required to
achieve an accuracy of ≥ 99.9% for single-page signatures.
For two-page signatures, we were able to achieve this level of
accuracy with six measurements, while three measurements
were sufficient for signatures of five pages.

For example, if six measurements are desired, it takes about
66 minutes to probe the signature pages. Increasing the
number of measurements increases the time linearly. To
probe all signatures of the sshd-Debian-x86 64 dataset con-
secutively takes about eight days if six measurements are
performed per signature. However, as our signature pages
are disjunct in between different application versions, they
can actually be probed in parallel if enough memory is avail-
able in the attack VM va. This reduces the time to about
66 minutes, the same time it takes to probe a single signa-
ture. For that, all signatures are loaded into the memory
of va at once. The attacker must then wait for deduplica-
tion to occur. Afterwards, the timing measurements can be
performed consecutively. Each of them takes a fraction of a
second. This process can then be repeated multiple times to
achieve the desired number of measurements per signature.

To further reduce the number of measurements required,
similar versions can be grouped [15]. This results in larger
signatures and eliminates all small signatures for our datasets.
While this means that an attacker can no longer identify the
exact version and distribution patch level of an application,
we found that for our datasets, almost all groups contain
only different distribution patch level releases belonging to
the same upstream version released by the original develop-
ers of the software. The only exception from this was a group

in the sshd-Debian-x86 64 dataset, which contained three
versions from two neighbouring upstream versions. Thus,
the versions in a group are likely to contain similar secu-
rity vulnerabilities, which means that for most attackers,
the version can still be identified precisely enough if groups
are formed.

4.8 Limitations
In the following, we discuss some limitations to the presented
side-channel attack.

Attacker does not know IP of co-resident VMs.
The attack presented in this paper allows an attacker to find
out whether a specific version of an application is running
in another VM that is co-resident on the host. However, it
does not allow an attacker to find out in which specific VM
the application is being executed. It also does not provide
any information on how to contact the VM that runs the
identified application, which is necessary to exploit a po-
tential security vulnerability. If an attacker is interested in
attacking a specific online service, they may try to obtain a
VM that is co-resident with a VM hosting it. Varadarajan
et al. [26] have shown that this is realistic in public cloud
environments. Depending on a cloud service provider’s in-
frastructure, IP addresses may also be correlated with the
placement and type of VMs [23], which would allow an at-
tacker to increase its chances of obtaining a co-resident VM
by choosing the deployment zone and instance type accord-
ingly. This may also help an attacker that does not have
a specific target in mind in narrowing down potential IP
addresses of vulnerable co-resident VMs. For that, the at-
tacker can randomly spawn attack VMs to find vulnerable
VMs.
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of other pages

Memory deduplication must be active.
Our attack assumes that deduplication is activated on the
host. Nowadays, many of the larger public cloud service
providers such as Google [10] have turned off memory dedu-
plication in fear of side-channel attacks. However, the tech-
nique can offer large memory savings [4, 27], which makes
it attractive to server operators. This is especially true in
environments where users of VMs are believed to be at least
somewhat trustworthy, e. g. in private clouds.

Application versions might be indistinguishable.
Another assumption is that application versions are suffi-
ciently different from each other. For the datasets we sur-
veyed, this is the case. When generating signatures for in-
dividual application versions in our dataset, all signatures
contain at least one page. This implies that all versions can
be differentiated. Theoretically, however, it is possible for
the signature generation to fail. This could be caused by
two identical binaries in two different versions of a package,
e. g. if only a default configuration file was changed between

the package versions. It can also be caused by a version
containing only pages that are also present in multiple dif-
ferent other versions, e. g. v1 = {a, b, c}, v2 = {a, d, e}, v3 =
{b, c, f} will lead to the signature generation for version v1
failing. Such situations can be resolved by creating group
signatures [15] for the affected versions.

Our experiments were conducted on Linux only.
Experiments were only conducted for the Linux OS, which is
dominant in cloud environments. However, we believe that
our results are applicable to other operating systems as well.
Most Unix-based OSs use the ELF file format for their exe-
cutables and will employ a very similar loading mechanism
to Linux. Adapting the attack to another OS requires tak-
ing into account how executables are structured and loaded
on that system. For example, Windows uses the Portable
Executable (PE) format [17] for its executables. For PE
files, sections are loaded instead of segments. Sections are
described in a similar header table as in ELF files, which
can be used as a base for analysing a PE executable.
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5. COUNTERMEASURES
In this section we discuss potential countermeasures against
the presented attack. On the one hand, some of these aim at
removing the side-channel altogether, but will also remove
the memory savings offered by deduplication. On the other
hand, some countermeasures aim at reducing the effective-
ness of attacks without fully eliminating the side-channel.

Deactivating Memory Deduplication.
The easiest way of avoiding side-channel attacks by memory
deduplication is to turn this feature off. However, this comes
at the cost of eliminating all memory savings by deduplicat-
ing memory pages. Alternatively, this feature gets disabled
only for pages belonging to executable binaries. According
to our results, this will only require significantly more phys-
ical memory on systems hosting a large number of VMs that
all run very similar software. However, modifications to the
hypervisor and guest OS would be necessary to make them
aware whether a page actually belongs to a binary.

Slow down writes to non-deduplicated pages.
Another approach that the operator of the host can take
would be to slow down writes to non-deduplicated memory
pages. If write operations are slowed down to the level of
deduplicated pages, the side-channel is eliminated. However,
this requires significant modifications to be made to the host
operating system as write operations to non-deduplicated
pages will normally not pass through the deduplication mech-
anism. This should not affect the performance of read-heavy
workload, but it is unclear how large the adverse effect on
performance for more write-heavy workloads would be.
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Figure 8: Influence of changing the page size on the
proportion of shared pages. High-sharing version
pairs are pairs of versions with ≥ 5% shared pages

at standard page size.

Obfuscate Memory.
If a user who merely rents a VM on a host whose configu-
ration they cannot control wants to prevent memory dedu-
plication side-channel attacks on their VM, a possible solu-
tion would be to obfuscate the VM’s memory. This could be
achieved by deploying an Address Space Layout Randomiza-
tion technique that – unlike the standard Linux implementa-
tion – does not only shuffle pages in memory, but randomises
the memory contents on the sub-page level. This would en-
sure that all bits of the start address of a segment of an ELF
segment are random. Therefore, the alignment of the seg-
ment’s contents to page boundaries would be randomised,
resulting in 4 096 possible alignments. As two pages will
only be deduplicated if they match entirely, a different align-
ment prevents deduplication. An attacker could thus not
simply use signatures as described in this paper. The attack
would need to take all possible alignments of an application’s
pages into account, i. e. attackers would need to probe 4 096
times as many signatures. While these signatures can still
be checked in parallel, this requires a lot more memory. If
not enough memory is available, some signatures will have to
be checked sequentially, increasing the time for the attack.

Modify Binaries.
Another solution would be to slightly modify all executed
binaries. This can be achieved without recompiling by in-
serting randomly-placed NOP opcodes into an application’s
binary. Alternatively, it should also be sufficient to com-
pile the programs manually with some less commonly used
compile options considering that the binaries released by dif-
ferent distributions are based on the same upstream version
are highly different in their memory pages.

Encryption.
The user of a VM can also encrypt its memory. However,
all of these techniques will make it very hard or impossi-
ble for the hypervisor to deduplicate memory pages, thus
preventing memory savings.
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Figure 9: Influence of signature size and number of
measurements on accuracy of the version detection

Decoy Signatures.
Instead of preventing the side-channel attack outright, it
would also be possible to deceive attackers by placing pages
of binaries that are not actually running on any VM or the
host into memory, e. g. pages that are contained in our sig-
natures. This can be done by either the operator of the
host or anyone controlling a VM on the host. While an
attacker would still be able to detect the presence of soft-
ware versions that are being executed, this would come with
a certain number of false positives. An effective defence
by such an approach would require much more memory to
load a signatures for many versions of many applications. It
may, however, be suitable to prevent that an attacker gets
to know the exact version of a specific sensitive application
from memory deduplication attacks. It is not a replacement
for regularly updating the system, though: In case of a lack
of updates of both the application and the decoy signatures,
an attacker would still be able to establish an upper bound
on the application version.

6. CONCLUSION
We have introduced a novel side-channel attack that is based
on memory deduplication and that can detect software ver-

sions on co-resident VMs. We can even identify versions
to the precision of a specific distribution patch level of an
upstream release. This provides valuable knowledge to an
attacker, who can perform attacks targeting specific vulner-
abilities in the software versions that were detected by the
side-channel attack. No significant similarities were found
between binaries from different distributions that were based
on the same upstream release. This means that releases of
the same upstream software version from different distribu-
tions can be easily distinguished. It also implies that the
potential for memory savings by deduplicating executable
code is limited for computers hosting VMs with homoge-
neous software configurations. Changes to the page size
increase deduplication potential only for pairs of versions
that already share a significant number of pages at standard
page size, i. e. only for some pairs of releases of the same or
neighbouring upstream versions by the same OS and distri-
butions.

Our results indicate that we can detect the presence of a
signature of five pages or more in another VM or on the
host with a reasonable amount of three measurements with
an accuracy of≥ 99.9% even if there is significant load on the
memory of the host. However, an actual attack takes time
and for three measurements it will take about 32 minutes.

The side-channel can be prevented by disabling memory
deduplication across multiple VMs – either completely or by
modifying the deduplication mechanism to only not dedu-
plicate executable code.

Possible future work includes studying a broader range of
applications and extending the study to other operating sys-
tems, such as Windows. Furthermore, more advanced mit-
igation strategies should be developed to enable memory
deduplication to take place without leaking information to
other VMs.
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