User Tracking via Google’s QUIC Protocol

Erik Sy, M.Sc.
Introduction to the QUIC Transport Protocol

- **QUIC over UDP provides an alternative HTTPS stack to TLS over TCP**
 - Allows for zero round-trip time secure connection establishment

- **Deployment on the Internet**
 - accounts for 7% of global Internet traffic
 - more than five million hosts in IPv4 currently support QUIC
 - supported by Google Chrome (approx. 60% browser market share)
 - other use cases include DNS over QUIC, FTP over QUIC, SMTP over QUIC
QUIC’s Connection Establishment

- QUIC reuses cached server config and token across several user sessions

a) Initial Handshake

Client

Inchoate CHLO (...)

REJ (PUBS, CRT, SCID_1, Token_1, ...)

CHLO (SCID_1, Token_1, KeyShare_1, ...)

Encrypted Request (...)

SHLO (Token_2, KeyShare_2, ...)

Encrypted Response (...)

Server

Client

b) Subsequent Handshake

Server

CHLO (SCID_1, Token_2, KeyShare_3, ...)

Encrypted Request (...)

SHLO (Token_3, KeyShare_4, ...)

Encrypted Response (...)

Server
Opportunities and Limitations of Tracking via QUIC

- Independent of common tracking approaches like IP addresses, HTTP cookies and browser fingerprinting

- Opportunities compared to browser fingerprinting
 - Faster unique identification of a user
 - Lower consumption of bandwidth and computational resources

- Limitations
 - Browser restarts terminate a tracking period
 - QUIC configuration of a browser
 - Lifetime of Token and server configs
 - Feasibility of third-party tracking
Experiments to test Browsers’ default QUIC Configuration

- Measurement of QUIC’s Token lifetime within popular browsers
 - Maximum delay between two website visits for which the browser still attempts to establish the new connection with an cached Token

- Investigating the feasibility of third-party tracking via QUIC
Summary on the Browser’s default QUIC Configuration

<table>
<thead>
<tr>
<th>Browser</th>
<th>Lower boundary of Token’s lifetime</th>
<th>Third-party Tracking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chrome</td>
<td>20 days</td>
<td>viable</td>
</tr>
<tr>
<td>Opera</td>
<td>18 days</td>
<td>viable</td>
</tr>
<tr>
<td>Chromium</td>
<td>20 days</td>
<td>viable</td>
</tr>
<tr>
<td>Chrome (mobile)</td>
<td>11 days</td>
<td>viable</td>
</tr>
</tbody>
</table>
Countermeasures

- Browser vendors must align tracking via QUIC with HTTP cookie policies
 - Disabling third-party tracking via QUIC through sandboxing
 - Limiting the lifetime of cached QUIC data to a single page visit if not cookies are set by that website
 - Prevent a reset of the Token’s and server config’s lifetime

- Connection establishments based on public key cryptography require mechanisms to assure that public keys are not unique per user

- Privacy advocates
 - Observed browser behaviour seems not to comply with principles of privacy by design and privacy by default (Article 25 of GDPR)
Conclusion

- Zero round-trip time secure connection establishment requires prefetched data which can be potentially abused for tracking.

- Tracking via QUIC is a real-world privacy problem which allows the tracker to circumvent strict HTTP cookie policies and IP address changes.

- Countermeasures require the action of browser vendors.
Questions and Answers

E-mail: sy@informatik.uni-hamburg.de
Preprint: Please request pre-print article per email.