
Sharing Secrets between Mobile Devices
Maximilian Blochberger

blochberger@informatik.uni-hamburg.de

August 20, 2018

In this paper we show how to use the Elliptic-
curve Diffie-Hellman protocol with ephemeral
keys (ECDHE) in order to share a secret mes-
sage between two mobile devices by using QR
codes. An iOS application demonstrating this
approach is presented.

1 Introduction

Sharing secrets while an attacker is eavesdrop-
ping on the process is a problem solved a while
ago. Merkle [5] has proposed an idea that serves
as a foundation for exchanging keys securely.
Modern adoptions thereof, such as the Elliptic-
curve Diffie-Hellman (ECDH), are widely used
in current implementations such as the TLS
protocol.

Assume that two persons want to share a secret
between their mobile devices without disclosing
their secret to other persons looking over their
shoulders. They do not want to upload the
secret to a web service, as they do not trust
the service provider, and they cannot establish
direct network, Bluetooth or NFC connections.
The secret could then be shared by exchanging
QR codes between those devices. Since QR
codes are displayed on the device’s screen, an
observer could decode it. Password protection
of the shared secret is not effective, as entering
the password could also be observed. There-
fore, we employ a cryptographically secure key
exchange mechanism in order to protect the
exchanged secret.

First, the attacker model is described. Then
the process of the protected key exchange is
detailed. In the end, an app is presented that

demonstrates the described key exchange mech-
anism.

2 Attacker Model

The attacker, against whom our system is still
able to protect the secret, is an outsider and
has no direct access to the devices. He could be
someone, who is looking at the devices in ques-
tion (shoulder surfer) or he could own surveil-
lance cameras capturing the key exchange pro-
cess. He can capture and observe the screen of
both devices at any given time. The attacker
behaves passively and only observes the key
exchange process. He is limited in his compu-
tational complexity and cannot break crypto-
graphic systems.

3 Process

Assume that the two persons from the intro-
duction are called Alice and Bob. The Al-
ice wants to share a secret message m with
Bob. The key exchange mechanism is basically
Elliptic-curve Diffie-Hellman with ephemeral
keys (ECDHE) [3, 56 pp.]. First, both of them
create ephemeral key pairs, where kA is Alice’s
secret and KA Alice’s public key, kB and KB

are Bob’s keys respectively. Bob first has to
share his public key KB with Alice, so that
she can determine a common session secret
t = kAKB = kBKA from which the actual
symmetric session key k = h(t ‖ KB ‖ KA) is
derived using a cryptographic hash function h.
Next, she sends Bob her public key KA as well
as the encrypted message c = E(s, m). Bob
can now calculate the common session secret t

1



Bob Alice

KB

t = kAKB

k = h(t ‖ KA ‖ KB)
c = E(k, m)KA ‖ c

t = kBKA

k = h(t ‖ KA ‖ KB)
m = E−1(k, c)

Figure 1: The process of the key exchange mechanism in detail.

and derive the symmetric key k in order to de-
crypt the message m = E−1(s, c). This requires
two messages to be transmitted, which can be
done be reading QR codes mutually from each
others screens. The process is also depicted in
figure 1.

The attacker can observe both messages but
can still calculate neither t nor k since he does
know neither kA nor kB.

4 Demonstrator

In order to demonstrate this mechanism, a demo
application has been designed as depicted in
figure 2. The application has a demonstration
area, which allows the user to enter the message
that should be shared with the other device.
Obviously, the demonstration area should not
be present in productive apps, as the attacker
would see the shared message directly. The app
works as follows:

1. Alice enters a message on her device.

2. Bob clicks Import on his device. A QR
code containing Bob’s public key KB will
be displayed there.

3. Alice clicks Export on her device. The
camera will activate in order to scan the
QR code displayed on Bob’s device. The
camera permission has to be granted for
this. The QR code from Bob’s device will
automatically be detected and a QR code

will be shown on Alice’s device containing
Alice’s public key KA and the payload c.

4. Bob clicks Continue on his device. The
camera will active as described for Alice’s
device in the previous step. After the QR
code from Alice’s device was scanned the
shared message is then displayed in the
demo area on Alice’s device as well.

The demo application was implemented as an
open source application for iOS1. The Sodium
crypto library2 library is used as implemen-
tation of the key exchange mechanism, which
is using X25519 [4] and Blake2b-512 [1, 2, 6]
internally.

5 Limitations

This approach might be less comfortable to
users than entering a password than mutu-
ally scanning screens of two devices. But even
though the usability is impacted, it offers higher
security with respect to the described attacker
model.

Another limitation is that QR codes are limited
in size. This means that the shared message m
cannot be of arbitrary length.

1AppPETs/SecretSharing-iOS: Exchange secrets be-
tween devices using QR codes: https://github.com/
AppPETs/SecretSharing-iOS

2The Sodium crypto library (libsodium): https://
libsodium.org

2

https://github.com/AppPETs/SecretSharing-iOS
https://github.com/AppPETs/SecretSharing-iOS
https://libsodium.org
https://libsodium.org


SecretSharingImport Export

Demo
Message to share

Continue

Please scan this QR code with the device you want to share 
the message with.

Figure 2: Mockup of the user interface of the
demo application.

The standard iOS SDK, which is used for scan-
ning QR codes, does not support scanning QR
codes in binary format, therefore the values
of the QR codes are Base64 encoded. Due to
the QR code format specification, this allows
slightly more data to be packed into a single
QR code.

6 Conclusion

We presented a method for exchanging secret
keys of mobile devices by mutually scanning
QR codes. The described approach uses state-

of-the-art technology and protects against a
passive attacker that could capture and observe
the whole process. It works without network
or Bluetooth access and can be used to quickly
and securely share secrets between two devices,
such as exchanging addresses without the usage
of a secure messenger or encrypted mail.

Acknowledgements

This work was done in the AppPETs project3

and supported by the BMBF.

References

[1] Jean-Philippe Aumasson et al. BLAKE2:
Simpler, Smaller, Fast as MD5. Tech. rep.
Jan. 29, 2013, pp. 1–20. url: https :
//blake2.net/blake2.pdf (visited on
Aug. 8, 2018).

[2] Jean-Philippe Aumasson et al. BLAKE2X.
Tech. rep. 2016, pp. 1–4. url: https://
blake2.net/blake2x.pdf.

[3] Daniel R. L. Brown and Certicom Re-
search. Standards for Efficient Cryptogra-
phy: SEC 1: Elliptic Curve Cryptography.
Commercial standard. Version 2.0. Stan-
dards for Efficient Cryptography Group
(SECG), May 21, 2009, pp. 1–138. url:
http://www.secg.org/sec1-v2.pdf (vis-
ited on Aug. 8, 2018).

[4] Adam Langley, Mike Hamburg, and Sean
Turner. “Elliptic Curves for Security.” In:
RFC 7748 (2016), pp. 1–22.

[5] Ralph C. Merkle. “Secure Communications
Over Insecure Channels.” In: Commun.
ACM 21.4 (1978), pp. 294–299.

[6] Markku-Juhani O. Saarinen and Jean-
Philippe Aumasson. “The BLAKE2 Cryp-
tographic Hash and Message Authentica-
tion Code (MAC).” In: RFC 7693 (2015),
pp. 1–30.

3AppPETs – Datenschutzfreundliche Smartphone An-
wendungen ohne Kompromisse: http://app-pets.
org

3

https://blake2.net/blake2.pdf
https://blake2.net/blake2.pdf
https://blake2.net/blake2x.pdf
https://blake2.net/blake2x.pdf
http://www.secg.org/sec1-v2.pdf
http://app-pets.org
http://app-pets.org

	Introduction
	Attacker Model
	Process
	Demonstrator
	Limitations
	Conclusion
	References

