

27th July 2018 HotPETs 2018

Tracking Users across the Web via TLS Session Resumption

Erik Sy, M.Sc.

- Allows a client-server pair to establish a new TLS connection with a previously exchanged symmetric key
 - Provides temporal and computational performance gains
 - The client is identified by the server (tracker) through knowledge of this secret key
- Deployment on the Internet
 - 96% of TLS-enabled Alexa Top Million Sites support session resumption
 - Google/Cloudflare report a share of approx. 50% of their connections to be established through TLS session resumption (SR)

Opportunities and Limitations of Tracking via TLS SR

- Opportunities compared to HTTP cookies/ browser fingerprinting
 - Faster unique identification of a user
 - Lower consumption of bandwidth and computational resources

Limitations

- Browser restarts terminate a tracking period
- TLS configuration of a browser
 - Session resumption lifetime
 - Feasibility of third-party tracking

 Analysis of reported browser uptime within crash reports (normalized over total browser uptime)

- Measurement of the session resumption lifetime of 48 browsers
 - Maximum delay between two website visits for which the browser still attempts to establish the new connection through TLS SR
- Investigating the feasibility of third-party tracking via TLS SR

Browser	Session Resumption Lifetime	Third-party Tracking
Chrome	1 hour	viable
Firefox	24 hours	viable
Microsoft Edge	10 hours	blocked
Safari	24 hours	viable

Can a tracker extend these tracking periods?

Prolongation attack allows a Server to track the user across a chain of PSK's

- Simulating users' browsing behaviour based on a DNS data set
 - Pseudonymized DNS traffic logs of 3862 users over a 60-day period¹
- Approximating feasible tracking periods from a server perspective
 - Tracking period is extendible if the duration between to website visits is smaller than a given session resumption lifetime
- Estimating the share of permanently trackable user

8

 The ratio of users in our data set that can be identified by the server beyond the boundaries of the DNS data set

[1]: D. Herrmann et al., Behavior-based tracking: Exploiting characteristic patterns in DNS traffic. (2013)

Browser vendors

- Disable third-party tracking via session resumption through sandboxing
- Reduce TLS SR lifetime to a single page visit or at most six hours
- Prevent a reset of the resumption lifetime

TLS Working Group

- Reduce the recommended upper lifetime limit in the draft of TLS 1.3
- Recommend measures to prevent a reset of the TLS SR lifetime

Research Community

- Investigate handshake designs based on semi-static Diffie-Hellman key establishment such as OPTLS 1.3 and draft-rescorla-tls13-semistatic-dh
 - Public key is shared within an anonymity group

- TLS SR is a widely-supported mechanism, which allows unique user identification with a low bandwidth, computational and temporal overhead
- Browser vendors and the TLS working group need to further restrict this privacy problem
- Countermeasures heal the privacy problem but lead to a performance reduction

Questions and Answers

Slides available: ww	ww.erik-sy.de/hotpets
----------------------	-----------------------

- E-mail: hotpets@erik-sy.de
- Preprint: Please request pre-print article per email.

I acknowledge support from the Federal Ministry of Education and Research within the AppPETs project.

Federal Ministry of Education and Research

