
1

Bro-Osquery

Large-Scale Host and Network Monitoring
Using Open-Source Software

Steffen Haas

Department of Computer Science
IT Security and Security Management (ISS)

Bro Network Monitor
https://www.bro.org

Osquery Host Monitor
https://osquery.io/



2

Motivation

 Today: Separate monitoring of hosts and network

– Sometimes not event both in place

– Not enough visibility to detect all attacks

 Limited visibility in separated monitoring through

– Hosts: Unknown or hiding malware, negligible local actions, …

– Network: Encrypted network traffic, malicious local actions…

 Required: Assessing host behavior by evaluating

– Activity on hosts (host-centric)

– Communication with other hosts (network-centric)

– Both at the same time!

 Benefits from combining host and network monitoring

– More context about network communications

– More context about communicating applications



3

 Two types of data sources in your network

– Network Monitor: Bro

– Host Monitor: Osquery

 Bro as central analysis platform

– Monitors network communication

– Receives data from Osquery hosts

– Enables correlation of host and network data

• Which app/user is responsible
for specific communication?

– Detection of (attack) scenarios with
knowledge from hosts and network

• Tracking execution of downloaded files

• Detecting SSH-Chain

• Identifying users responsible for data exfiltration

Bro-Osquery in a nutshell

Internet

Regular Network Traffic

Host Information



4

Bro in a nutshell

 Powerful analysis framework for network traffic

 Focuses on network security monitoring

 Scripts as Bro’s “Magic Ingredient”

– Comes with > 10,000 lines of script code

– Deep Packet Inspection

• Application specific

– Custom policies
and detection rules

From https://www.bro.org



5

Features of Bro-Osquery

 Controlling Osquery schedule and receiving results with Bro

– Central control instance for querying groups of Osquery hosts

• Maintaining query schedule of hosts at runtime

• Ability to execute one-time queries

– Results are natively fed back and are available in Bro script

 Logging query results

– Central logging of structured data as Bro log files

– Extending network sessions with users/applications

 Detection of sophisticated scenarios

– Ability to write Bro scripts with access to full host and network data

– Event-based detection in real-time extensible by custom scripts

 Large-scale deployments

– Load distribution using proxies and/or multiple Bros

C
o

n
tr

o
l
Q

u
e
ri
e

s

Internet



6

Demo: Logging of SQL Queries

 Controlling and logging the query results for all connected Osquery hosts



7

Demo: Logging of SQL Queries



8

Demo: Logging of SQL Queries



9

Demo: Logging of SQL Queries



10

Network Stack in Bro-Osquery

 Extensions to the existing open-source tools

– In Osquery: 

• Bro plugins including communication library (c++)

– In Bro: 

• Osquery framework (bro script)

CAF

Bro Plugins

Broker

CAF

Bro Scripts

Osquery Framework

Bro‘s
communication
library

Publish-

Subscribe-

Network

Control Queries

Broker



11

Architecture in Osquery

Daemon

Schedule

Query1:
query: Select * from users;

added: true;
interval: 60;

Query2:

query: Select * from crontab;

added: true;
interval: 10;

Config

Tables

Logger

Communication

Endpoint

(Broker)

Ad-hoc

(interactively)

Write

Query Results

Update

Execute

Send
Logger

Config

Bro-Plugins

Query

Results



12

Technical Details: Extending Osquery Code

 Broker Manager (Singleton)

– Connectivity with the Broker network

– Handling of messages (publishing and subscribing to messages)

 Query Manager (Singleton)

– State keeping of schedule/ad-hoc queries for result handling

 Distributed Plugin

– “Runnable” to receive Broker messages

– Updating schedule or execution of one-time queries

 Logger Plugin

– Sending query results to Bro



13

 Organization of Osquery hosts

– Hosts are organized in groups (non-disjoint)

• Statically by configuration 

• Dynamically based on IP subnets

– Groups can be addressed by SQL queries

– Default group contains all Osquery hosts

 Communication with Osquery hosts

– API for organizing groups (IP subnet -> group name)

– API for subscribing queries (query result -> topic name)

– API for executing one-time queries (query result -> topic name)

Using the Osquery Framework

West
Coast

East
Coast

queryA queryB



14

Demo: Host-Network Correlation

 Tie username and process to TCP connections



15

Demo: Host-Network Correlation



16

Demo: Host-Network Correlation



17

Process-Socket Correlation

 Process-Socket Correlation based on audit

– Processes: Event-based table “process_events”

– Socket: Event-based table “socket_events”

• Incomplete five-tuple socket

• Two possible socket actions: “bind” and “connect”

HOST NETWORK

Process-Socket Correlation

Host-Network Correlation

action protocol local_addr local_port remote_addr remote_port

connect <remote_addr> <remote_port>

bind <local_addr> <local_port>

Socket

- protocol

- srcIP

- dstIP

- srcPort

- dstPort

Packet

- protocol

- srcIP

- dstIP

- srcPort

- dstPort

Process

- pid

- uid

- …

Session

- protocol

- header

- bytes

- …



18

Host-Network Correlation

 Process-Socket Correlation

– Merging of process/socket events based on common process ID

– Process-Socket data of each host

• Socket binds on local IPs and ports

• Socket connects to remote IPs and ports

 Host-Network Correlation for specific network connection

– Matching the five-tuples that identify

• Sockets on hosts

• Connections in the network

 Host-Network Correlation with Process-Socket Correlation based on audit

– Identify hosts for source and destination IP of the connection

– Search the Process-Socket data of the two hosts for specific network connection

• Source host: Match remote address (IP+Port) only

• Destination host: Match local address (IP+Port) only

ss

ss

?

?

P

P

ss

s

s

s = (IP:Port)



19

Large-Scale Deployments

 Load distribution through proxies and multiple Bros

– Backbone consists out of Bros and proxies

– Queries of interest pushed to backbone edges

– Osquery hosts connect to an edge Bro/proxy

 Distribution of interests

Global 

interests:

- q1 for g

- q2 for gLocal

interests:

- q2 for g

𝐵2

Query 

schedule:

- q1

- q2

𝑂1

Direct

neighbors:

- O1 in g

𝑃

Local

interests:

- q1 for g

𝐵1

Match
Query <–> Group <–> Host



20

Project Status of Bro-Osquery

 Complete view on processes

– Using event-based table to capture short-lived processes

– Table contains only “execve” syscalls

– Network communication probably by asynchronous threads

• Created by “fork”/”clone” syscall

 Upgrade to osquery 3

– Redesign of the kernel audit in Osquery 3

– Breaks the event-based tables when Osquery schedule is updated

• Although updating schedule is an external API (github issue)

– Bro-Osquery is stuck on latest Osquery 2 (2.11.2 from Dec 30, 2017)

 Large-scale testbed

– Are you interested in running Bro-Osquery?



21

How to run Bro-Osquery?

 Project repository:

– https://github.com/bro/bro-osquery

 Install Bro-featured Osquery

– Build from fork until Bro is officially supported

– Optionally: Set up as service and write configuration file

 Install Osquery-featured Bro

– Build from source for required development features

– Install the osquery framework as Bro scripts

– Use existing/custom Bro scripts to query Osquery hosts

https://github.com/bro/bro-osquery


22

Questions?


