
AppPETs: A Framework for Privacy-Preserving Apps
Erik Sy

University of Hamburg
Hamburg, Germany

sy@informatik.uni-hamburg.de

Tobias Mueller
University of Hamburg
Hamburg, Germany

Matthias Marx
University of Hamburg
Hamburg, Germany

Dominik Herrmann
University of Bamberg
Bamberg, Germany

ABSTRACT
The protection of users’ privacy is an important property of smart-
phone apps. However, most apps do not honour the privacy of
their users. One reason for this deficiency is that developers are
unaware of and struggle with the implementation of protection
techniques. In this paper, we propose an infrastructure to simplify
the use of privacy enhancing technologies (PET) in apps. Further-
more, AppPETs provides incentives for app developers to build
privacy-preserving apps. The AppPETs concept consists of a client-
side library (P-Lib), a hosting environment for privacy services
(P-Services), an anonymous communication network, and an audit
process. AppPETs supports various types of anonymity that are
relevant for real-world use cases. It closes the gap between research
and practice in this field and will foster the adoption of PETs on
mobile devices.

CCS CONCEPTS
• Security and privacy → Pseudonymity, anonymity and untrace-
ability; Privacy-preserving protocols; Mobile and wireless security;
Privacy protections;

KEYWORDS
Privacy Enhancing Technologies; Anonymity; Mobile devices; Se-
curity; Framework
ACM Reference Format:
Erik Sy, Tobias Mueller, Matthias Marx, and Dominik Herrmann. 2018.
AppPETs: A Framework for Privacy-Preserving Apps. In SAC 2018: SAC 2018:
Symposium on Applied Computing , April 9–13, 2018, Pau, France. ACM, New
York, NY, USA, Article 4, 4 pages. https://doi.org/10.1145/3167132.3167415

1 PROBLEM DESCRIPTION
Even though there exist many technical measures to address data
protection on mobile devices [5, 6, 11], app developers are mostly
not aware of them [1]. As a consequence, their apps are not de-
signed to be in line with the data protection goals [4]. Moreover,
research work showed that most software developers have difficul-
ties in differentiating between security and privacy [12]. Balebako
et al. [1] suggest to design tools to facilitate the implementation of

SAC 2018, April 9–13, 2018, Pau, France
© 2018 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in SAC 2018:
SAC 2018: Symposium on Applied Computing , April 9–13, 2018, Pau, France, https:
//doi.org/10.1145/3167132.3167415.

privacy best practices for app developers. Following this sugges-
tion, we provide a framework that simplifies the usage of PETs for
developers.

Results reported by Sheth et al. [17] indicate that anonymisa-
tion techniques are well perceived by users and app develop-
ers as a means to reduce privacy concerns. For this reason, we
designed AppPETs in such a way that six types of anonymity can
be protected with it.

While app developers perceive anonymisation techniques as
effective to protect users’ privacy, there exist hardly any tools to
assist with the implementation of these methods. One of the few
examples is the Sharemind SDK [5]. However, it addresses a very
specific use case (end-to-end encrypted data processing) and is
subject to practical limitations because it relies on secure multi-
party computation to protect the data content against a computing
server [5].

More practical are frameworks that facilitate the inclusion of
ACNs into mobile apps, for instance Onionkit [11] and CPAProxy
[6]. However, various types of ACNs (e. g., proxies, VPNs, mix
networks) differ in terms of the underlying attacker model and
performance, which makes the choice for an adequate anonymiza-
tion method a challenging task. The AppPETs concept reduces this
complexity by providing multiple anonymisation techniques
through a privacy framework and helping the app developer to
choose the adequate anonymization method for a set of common
use cases.

2 APPPETS DESIGN
The AppPETs infrastructure, as shown in Fig. 1, consists of a client-
side privacy library (P-Lib), an ACN, and Privacy Services (P-Ser-
vices). The P-Lib provides functionalities for app developers to re-
duce the burden of creating privacy-preserving apps. This includes
methods to use PETs like ACNs, private information retrieval (PIR),
and encryption algorithms.

An ACN provides unlinkability between the client and the server
on the network layer. The choice of the anonymisation technology
used should take the limited resources of mobile devices into ac-
count and provide a sufficient performance to support a broad field
of apps.

PETs such as PIR [8, 14] or secure multi-party computation [10]
require servers to support these protocols and algorithms. P-Services
provide such functionalities and therefore make it easier for app
developers to use these PETs.

https://doi.org/10.1145/3167132.3167415
https://doi.org/10.1145/3167132.3167415
https://doi.org/10.1145/3167132.3167415


SAC 2018, April 9–13, 2018, Pau, France E. Sy et al.

P-Lib

P-Lib Anonymous Communication
Network

P-Service

App

Privacy Seal with corresponding audit

Mix Cascades

Attribute-based
Credentials

Secure Storage

Private Information
Retrieval

Mix 1 Mix 2 Mix n

Figure 1: Overview of the AppPETs concept.

The AppPETs infrastructure is complemented by a privacy seal
which is awarded after an audit. The audit validates the compli-
ance of an app with the data protection guidelines of the privacy
seal. An app could be advertised with that privacy seal to show its
compliance, which in turn attracts users and differentiates the app
from its competitors.

2.1 P-Lib
The P-Lib is a software library that provides generic functions for
the development of privacy-preserving apps. This includes func-
tions to use encryption algorithms, the ACN, privacy-preserving
algorithms to access hardware sensors or private data on the mo-
bile device and P-Services such as Attribute-based Credentials
(ABCs) [16] and PIR. ABCs describe a mechanism to authenticate
certain attributes of an entity, without disclosing additional at-
tributes.

In this context a privacy-preserving algorithm to access a hard-
ware sensor may provide an app with coarse-grained location infor-
mation like postal codes instead of accurate coordinates from the
GPS sensor [13]. An example for privacy-preserving access of data
on a mobile device would be a function, which strips off metadata
such as GPS coordinates from photos, if that information is not
required.

P-Lib provides implementations of PETs to an app developer and
therefore reduces the hurdles to make use of PIR, ABC and secure
multi-party computation. The P-Lib is aligned with the APIs of the
P-Services to support their functionality. It can be used on the one
hand to protect the confidentiality of private data against sinks,
e. g., by encrypting data before it is transmitted to a remote server.
On the other hand it can be used to protect sensitive data before it
gets into the app context. This allows developers to access only a
subset of the functionality of a protected resource, such as sensors
or other resources which are usually protected by the operating
system’s permission system.

2.2 Anonymous Communication Network
An ACN allows an app to communicate anonymously with P-
Services or otherwebsites in the Internet. To support awide range of

apps, such as messaging, gaming or streaming apps, the anonymity
network should target the different needs of these mobile applica-
tions. It should provide high performance in terms of throughput
and latency if needed. Lightweight ACNs (e. g., SHALON [15]) with
higher bandwidth throughput and a lower round trip time (com-
pared to the popular Tor network [9]) may be needed to ensure
good usability on mobile networks. Depending on the anonymity
network, P-Services could be designed as hidden services, such that
the traffic never leaves the anonymity network.

2.3 P-Service
P-Services are the server infrastructure of the AppPETs design.
They provide APIs for PETs like PIR, ABC and secure multi-party-
computation. They can be accessed via the P-Lib, which allows the
app developer to directly include these PETs in their apps.

Besides services for PIR and ABC there are also P-Services for
data storage, anonymous payments [19], and privacy-preserving
targeted advertisement [18].

2.4 Audit
The AppPETs concept includes an optional app audit to validate
the data protection behaviour of an app. Apps which successfully
pass the audit are certified with a privacy seal. The audit consists
of a written data protection statement, static and dynamic program
analysis techniques, a verification mechanism, and a privacy seal.

The data protection statement defines the requirements which
an app needs to satisfy to become certified with the privacy seal.
During the audit static and dynamic program analysis is performed
on the closed-source app bundles that would be normally down-
loaded from the app store. This ensures that the app uses the P-Lib
and P-Services as intended and that the requirements of the data
protection statement are satisfied. Moreover, side-channels that
could be used for malicious behaviour can be detected.

The privacy seal, which is granted to an app developer after
a successful audit, is an incentive for the app developer to use
AppPETs and to comply with the requirements. Furthermore, the
seal helps enterprises and public authorities to ensure that their



AppPETs: A Framework for Privacy-Preserving Apps SAC 2018, April 9–13, 2018, Pau, France

employees use only privacy-preserving apps on their mobile devices
in order to be compliant with data protection standards.

3 IMPLEMENTATION AND EVALUATION
In this section, we first present our attacker model before we elabo-
rate on how the design of AppPETs makes it possible to achieve six
different types of anonymity (cf. Sec. 3.2). We then evaluate how
AppPETs benefits contemporary mobile applications by investigat-
ing the features that are in use in popular apps.

3.1 Attacker Model
AppPETs allows developers to build apps which may require dif-
ferent types of anonymity. This anonymity can only be assured
within a defined attacker model. We make the following assump-
tions about adversaries against which AppPETs is supposed to offer
protection:

• An adversary cannot break cryptographic primitives.
• An adversary cannot compromise the physical device of an
honest user running the app.

• An adversary is limited to the security assumptions of the
respective PETs used for the implementation of an app.

AppPETs considers three types of adversaries: First, outsiders
(eavesdroppers on the network, other users), secondly app develop-
ers (who try to spy on the users of their apps), and thirdly P-Service
operators (who try to spy on the users of apps that use their P-
Service). The auditor is not assumed to be malicious. However, we
have to assume that auditor and malicious app developers do not
collude.

3.2 Achieving Anonymity
This subsection details how AppPETs helps a developer to create
apps that offer the respective types of anonymity.

Sender anonymity requires at least an ACN to protect the iden-
tity of the uploading device. If an online service restricts uploads
to authorised users, then ABCs [2] might be used to anonymously
authorise users before they can upload some data to the server. If
the adversary can launch a successful attack against the ACN or
the ABC system the uploader can be deanonymised.

Receiver anonymity can be implemented with an ACN and,
if the download is restricted to an authorised audience, ABCs to
anonymously authorise the download. Besides the attacks against
the ACN or the ABCs (see previous paragraph) an adversary might
include malware in the data file which leaks information about the
downloading device to a given host. Depending on the content of
the data the adversary might also expect a certain behaviour from
the downloading entity like visiting a specific website. This context
information can be used to reduce the anonymity set.

Server anonymity requires the use of an ACN which supports
hidden services as Tor [9] does. The adversary can either try to
attack the software running on the server directly or make use of
limitations of the ACN [3].

Data file anonymity can be achieved with a non-determin-
istic encryption of a data file, where several times of encrypting
the same data file results each time in different cipher texts. If
the adversary has no access to the decryption key and the used

encryption algorithm is secure, then the adversary might try an
brute-force attack.

Query anonymity requires that the server and client support
a PIR scheme [7]. The adversary tries to find out what data was re-
quested by the client. The adversary might try to exploit limitations
of the used PIR scheme.

Data modification anonymity can be achieved with non-de-
terministic encryption. The client retrieves a data set from the server
in order to hide the changed data within that set. Then it can either
modify the data by adding, deleting, or replacing information in
the data set or leave the data set unchanged. Afterwards it encrypts
the data set with a non-deterministic algorithm and uploads it to
the server. The adversary cannot break cryptographic primitives
and might only try a brute-force attack, if he has no access to the
decryption key or and a secure encryption algorithm was used.

3.3 Quantitative Analysis of Popular Apps
In order to determine what kinds of functionality are required in
typical apps, we have evaluated 100 popular apps from Apple’s
App Store in September 2017. To obtain a broad variety of apps, we
picked the Top 10 apps from ten randomly chosen categories. We
considered the following categories:

We specifically looked for the following kinds of functionality,
which can be implemented with AppPETs in a privacy-preserving
manner:

Network Does the app communicate over the Internet? We
determined this property by starting the app and observing
the network traffic the device generates. In order to distin-
guish between app-specific traffic and background traffic
of the operating system, we installed a custom X.509 root
certificate on an Apple iPhone 6s and used mitmproxy to
inspect the encrypted TLS traffic.

User accounts Does the app offer a way to register an account
or log into it? We started each app and browsed the user
interface. We searched for widgets that indicate a possibility
to register a personal profile or log into the service.

In-app purchases Does the app ask for payments to be made
from within the app itself? We determined this property by
analysing the metadata of each app for the in-app purchases
flag.

Multi-user interaction Does the app offer some way of com-
municating with another user of the service? We determined
this property by looking at descriptions of the app in the
associated metadata and by starting the mobile application
and navigating the UI in order to find elements indicating
some form of communication, e. g., whether it offers to send
a message to another user.

The results of our analysis are shown in Fig. 2, Fig. 3 and Fig. 4.
All of the 100 apps require network functionality. User accounts
can be used by 73 apps, communication with other users can be
performed by 52 apps, and payments can be made with 40 apps.
All apps in the social network category have both the user account
and multi-user communication functionality. The category with the
most in-app purchases is games (9 of 10 apps) followed by Health
and Fitness (8 of 10 apps). In principle, each of the investigated apps
could be improved with AppPETs in terms of privacy.



SAC 2018, April 9–13, 2018, Pau, France E. Sy et al.

Figure 2: Number of top 10 gratis apps in iOS App Store Cate-
gories that support the feature user accounts (in total: 73 %).

Figure 3: Number of top 10 gratis apps in iOS App Store Cat-
egories that support the feature in-app purchases (in total:
40 %).

Figure 4: Number of top 10 gratis apps in iOS App Store Cate-
gories that support the feature communication between app
users (in total: 52 %).

4 CONCLUSION
In this paper we have introduced AppPETs, a framework that strives
to make it easier for app developers to access and use privacy en-
hancing techniques. We performed a quantitative analysis consist-
ing of 100 popular iOS apps in order to determine common features

that may cause inadvertent leakage of sensitive user data. The pro-
posed AppPETs framework provides implementations of PETs that
allow app developers to create privacy-preserving apps, which are
prevented from unlimited spying on their users.

App developers can use this framework to include PETs such
as anonymous communication networks (ACN), attribute-based
credentials or private information retrieval into their apps. Further-
more, we described six types of anonymity which can be realised
with the introduced framework and showed their usage with exam-
ple apps.

On the long term we hope that AppPETs will be adopted by
many app developers and thus contribute to the dissemination of
privacy enhancing techniques.

Acknowledgements. This work was supported by BWFG/LFF
as well as BMBF within the AppPETs and AN.ON-next projects.

REFERENCES
[1] R. Balebako, A. Marsh, J. Lin, J. I Hong, and L. F. Cranor. 2014. The privacy and

security behaviors of smartphone app developers. In USEC’14.
[2] J. Bethencourt, A. Sahai, and B. Waters. 2007. Ciphertext-Policy Attribute-Based

Encryption. In P IEEE S SECUR PRIV. IEEE.
[3] A. Biryukov, I. Pustogarov, and R.-P. Weinmann. 2013. Trawling for Tor Hidden

Services: Detection, Measurement, Deanonymization. In P IEEE S SECUR PRIV.
IEEE.

[4] K. Bock, W. Ernestus, M. Kamp, L. Konzelmann, T. Naumann, U. Robra, M. Rost,
G. Schulz, J. Stoll, U. Vollmer, and M. Wilms. 2016. The Standard Data Protec-
tion Model - A concept for inspection and consultation on the basis of unified
protection goals. In Conference of the Independent Data Protection Authorities.

[5] D. Bogdanov, S. Laur, and J. Willemson. 2008. Sharemind: A Framework for Fast
Privacy-Preserving Computations. In ESORICS, Vol. 5283. Springer.

[6] Ursache C.-V. 2017. CPAProxy: A thin Objective-C wrapper around Tor. https:
//github.com/ursachec/CPAProxy. (2017).

[7] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. 1995. Private Information
Retrieval. In FOCS. IEEE Computer Society.

[8] D. Demmler, A. Herzberg, and T. Schneider. 2014. RAID-PIR: Practical Multi-
Server PIR. In CCSW. ACM.

[9] R. Dingledine, N. Mathewson, and P. F. Syverson. 2004. Tor: The Second-
Generation Onion Router. In USENIX Security Symposium. USENIX.

[10] T. Dugan and X. Zou. 2016. A Survey of Secure Multiparty Computation Protocols
for Privacy Preserving Genetic Tests. In CHASE. IEEE.

[11] Guardian Project. 2017. OnionKit for Android. https://guardianproject.info/code/
onionkit. (2017).

[12] I. Hadar, T. Hasson, O. Ayalon, E. Toch, M. Birnhack, S. Sherman, and A. Balissa.
2017. Privacy by designers: software developers’ privacy mindset. Empirical
Software Engineering (2017).

[13] S. Jain and J. Lindqvist. 2014. Should I Protect You? Understanding Developers’
Behavior to Privacy-Preserving APIs. In USEC’14.

[14] R. Ostrovsky and W. Skeith. 2007. A Survey of Single-Database Private Informa-
tion Retrieval: Techniques and Applications. PKC’07) (2007).

[15] A. Panchenko, B. Westermann, L. Pimenidis, and C. Andersson. 2009. SHALON:
Lightweight Anonymization Based on Open Standards. In IEEE IC COMP COM
NET. IEEE.

[16] A. Sabouri, I. Krontiris, and K. Rannenberg. 2012. Attribute-based credentials for
trust (ABC4Trust). In TrustBus. Springer.

[17] S. Sheth, G. E. Kaiser, and W. Maalej. 2014. Us and them: a study of privacy
requirements across north america, asia, and europe. In ICSE. ACM.

[18] V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum, and S. Barocas. 2010. Ad-
nostic: Privacy Preserving Targeted Advertising. In NDSS. The Internet Society.

[19] B. Westermann. 2009. Security Analysis of AN.ON’s Payment Scheme. In Nord-
Sec’ 09. Springer.

https://github.com/ursachec/CPAProxy
https://github.com/ursachec/CPAProxy
https://guardianproject.info/code/onionkit
https://guardianproject.info/code/onionkit

	Abstract
	1 Problem Description
	2 AppPETs Design
	2.1 P-Lib
	2.2 Anonymous Communication Network
	2.3 P-Service
	2.4 Audit

	3 Implementation and Evaluation
	3.1 Attacker Model
	3.2 Achieving Anonymity
	3.3 Quantitative Analysis of Popular Apps

	4 Conclusion
	References

