DNS Traffic Analysis

Opportunities, Risks, and (Self-)Defenses

Utility for forensic investigations
Potential threats to privacy
New ideas for protection

Dr. Dominik Herrmann

Slides available at https://dhgo.to/dns-traffic-analysis

1. The Spotlight movie 6. Migraine headaches

7. Kim Kardashian

8. Jacob Tremblay

9. Toyota Corolla

10. Gigi Hadid

Trending Now

2. Boston Celtics

3. Abraham Attah

5. Evening dresses

4. Jared Leto

Motivation of monitoring DNS

- block known malicious domains (e.g. phishing)
- retain log of all DNS queries for later analysis

low storage needs

DNS log contains essential metadata:

Example 1: confirm source of traffic

Did incriminating traffic originate from **Bob's** laptop?

Source of discrepancy? Rogue hardware?

DNS queries from Bob's IP

2016-03-05 06:46:01.383 aus5.mozilla.org

2016-03-05

09:41:37.263

c1.adform.net

2016-03-05 09:46:01.455 www.exploit-db.com

2016-03-05

09:41:37.708

I.betrad.com

?

2016-03-05 10:22:01.814 time.apple.com

2016-03-05 09:41:38.262 lotame.nexac.com

2016-03-05 10:22:01.950 b.config.skype.com

2016-03-05 09:41:38.686 ping.chartbeat.net

2016-03-05 14:17:09.663 notify5.dropbox.com

2016-03-05 09:41:41.627 do._ans-sa._uap.mrtz.oc

2016-03-05 14:17:10.411 ols.officeapps.live.com

2016-03-05 09:41:48.917 college.usatoday.com

2016-03-05 15:29:22.510 api.textmate.org

Example 2: reconstruct visited websites

- What websites did Eve visit before we fired her?
- Which users surfed to www.yahoo.com last week?

Stelle als Yahoo-Chefin antreten.

Searching for www.yahoo.com ...

09:41:20.242	ad4.adition.com	
09:41:21.770	ads.nuggad.com	
09:41:40.152	skypedata.akadns.net	
09:42:41.985	dl-debug.dropbox.com	
09:45:11.201	google.com	visited
09:46:00.033	www.heise.de	visited
09:46:00.133	dealbook.nytimes.com	
09:46:00.134	pressroom.yahoo.net	DNS prefetching
09:46:00.169	www.yahoo.com	
09:46:00.783	imagesrv.adition.com	
09:46:00.989	ad.atdmt.com	advertisements &
09:46:00.989	ad.doubleclick.net	user tracking
09:46:00.991	imagerv2.adition.com	
09:46:01.017	jobs.heise.de	embedded image
		г

Simple heuristics look promising but are not always accurate.

He	ur	istic	sea	ırc	h:
Δt	>	5 se	ec		

09.40.00.109	www.yahoo.com	true negative
09:46:00.169	•	true pogetive
09:46:00.134	pressroom.yahoo.net	
09:46:00.133	dealbook.nytimes.com	
09:46:00.033	www.heise.de	true positive
09:45:11.201	google.com	true positive
09:42:41.985	dl-debug.dropbox.com	
09:41:40.152	skypedata.akadns.net	
09:41:21.770	ads.nuggad.com	
09:41:20.242	ad4.adition.com	

www.yahoo.com cached for 1–5 min

09:46:30.812 [visit Yahoo website] false negative

Browser

DNS Resolver

51 domains resolved when Yahoo's home page is visited

www.yahoo.com

bs.serving-sys.com pclick.yahoo.com s.yimg.com sb.scorecardresearch... crl-ds.ws.symantec.co... y.analytics.yahoo.com geo.query.yahoo.com csc.beap.bc.yahoo.com geo.yahoo.com comet.yahoo.com answers.yahoo.com everything.yahoo.com groups.yahoo.com login.yahoo.com mail.yahoo.com mobile.yahoo.com

shopping.yahoo.com
www.flickr.com
www.tumblr.com
beap.gemini.yahoo.com
finance.yahoo.com
ftw.usatoday.com
geo-um.btrll.com
googleads.g.doublecli...
match.adsrvr.org
pagead2.googlesyndic...
help.yahoo.com
info.yahoo.com
news.yahoo.com
na.ads.yahoo.com

pr-bh.ybp.yahoo.com

rmx.pxl.ace.advertisin...

r.turn.com

search.yahoo.com sports.yahoo.com thinkprogress.org sync.adap.tv sync.adaptv.advertisin... www.cbsnews.com ads.yahoo.com www.chicagotribune.... www.foxnews.com www.latimes.com fonts.googleapis.com tpc.googlesyndication... cm.g.doubleclick.net www.npr.org www.politico.com www.sbnation.com www.upi.com

Can we use the **set of domains** to verify whether a website was visited?

- **Experimental approach:** 1. Download websites with a browser
 - 2. Record resolved hostnames
 - 3. Determine k-identifiability of websites

Measurements indicate:

many websites have a unique DNS pattern

	visited home page	inferenc whole (!		
	ALEXA top 100 000 websites	HEIS 6283 news pa	3	Interesting problems:– robustness– threshold for match– influence of cache
<i>k</i> = 1	99 %	63 %	%	
<i>k</i> ≤ 5	99 %	76 %	%	

Is DNS-based visited website verification still possible?

Yahoo's DNS flow record fingerprint (multiset of 51 domain name lengths)

Measurements indicate:

domain lengths multiset is characteristic

drawing inferences from **DNS** logs and flow records

useful for forensics

privacy concerns

real-world
accuracy?

utility for law
enforcement?

probative value
of evidence?

your own resolver
resolver
of ISP "in the cloud"

e.g. by Google
and OpenDNS

But third-party DNS resolvers cannot track their users – or can they?

Challenge:

IP address changes frequently (daily)

Sessions are modelled as vectors that are compared with cosine similarity

(nearest-neighbor classifier)

How accurate is behavior-based tracking in practice?

re-identification accuracy [%]

Experimental approach:

- 1. Obtain DNS log with realistic traffic
- 2. Track users day to day (24h sessions)
- 3. Determine overall accuracy

with »ground truth« (pseudonymized)

How accurate is behavior-based tracking in practice?

re-identification accuracy [%]

ambiguous prediction ... can be resolved

How accurate is behavior-based tracking in practice?

re-identification accuracy [%]

Application to network forensics:

How accurate is user re-identification with **flow records only**?

domain names

re-identification accuracy [%]

Idea of ngram markers:

observed: 15 30 [pause ≥ 5 s] 18

bigrams: 15-30 30-P P-18

domain name lengths

re-identification accuracy [%]

Behavior-based re-identification is quite robust.

behavior-based linkage of browsing sessions

significant because undetectable threatens informational self-determination

accuracy improvements?

yes work in progress

exploitable by ad-networks?

forensics
authentication
anomaly detection

affordable protection?

yes stay tuned

What should a privacy-preserving DNS resolver look like?

generic anonymization services (Tor) too slow

Tailored solution: EncDNS

repurpose resolver of ISP as a proxy for encrypted queries

Challenge:

limited space (255 bytes)

cryptobox of Bernstein's NaCl library

(Curve25519)

Measurements indicate:

fast and scalable (>6000 queries/sec)

We can exploit **peculiarities of DNS** to improve performance and privacy.

Observation 1:

few domains are very popular (power law) top 10,000 domains: 80% of all queries

Tailored solution: PushDNS Service send DNS records of most popular domains to connected clients

Traffic requirements (10,000 domains):

- resolving domains: 350 MB per day

pushing updates: 0.8 KB/s per user

Observation 2:

most IPs constant over long time for 50% of domains: TTL > 5 min

Consequence: majority of queries unobservable and resolved instantaneously

Protection against behavior-based tracking

... can be delegated to Internet Service Provider

Change IP address frequently!

Chance for ISPs

Effortless protection with IPv6 Prefix Bouquets

ANON-Next

(BMBF, 2016 – 2019)

opportunity for forensics

A Double-Edged Sword: **Traffic Analysis in the Domain Name System**

threat to privacy

DNS patterns of software and websites

behavior-based tracking of users

13 18 16 10 24 34 15 17 20 16 15 14

0 2 0 1 0 0 2

PushDNS

INFERENCE IN NETWORKED SYSTEMS

PRIVACY ENHANCING TECHNOLOGIES

EncDNS

tailored protection tools promising

effortless tracking protection by delegation

IPv6 Prefix Bouquets