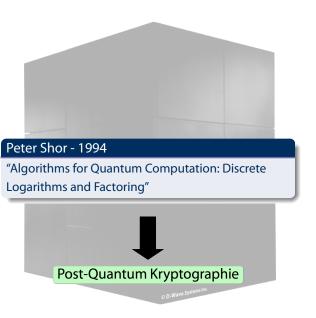


POST-QUANTUM KRYPTOGRAPHIE FÜR IPSEC

Dipl.-Inf. Ephraim Zimmer

Darmstadt, 20. November 2014


PQC für IPsec Folie 2 von 27

PQC für IPsec Folie 3 von 27

PQC für IPsec Folie 4 von 27

PQC für IPsec Folie 4 von 27

Notwendige Schritte

IPsec Analyse

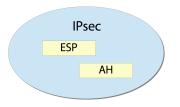
Geeignete Kryptosysteme für PQC

PQC-Implementierung

IPsec Erweiterung

Evaluation und Vergleich

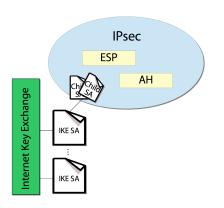
PQC für IPsec Folie 5 von 27



IPsec Analyse

PQC für IPsec Folie 6 von 27

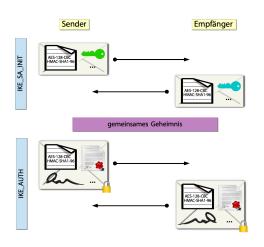
IP Security - RFC4301



- Zugriffskontrolle
- Teilnehmerauthentifizierung
- verbindungslose Integrität
- Vertraulichkeit
- Replay-Schutz
- eingeschränkte
 Datenfluss-Vertraulichkeit

PQC für IPsec Folie 7 von 27

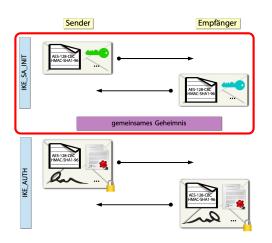
IP Security - RFC4301



- Zugriffskontrolle
- Teilnehmerauthentifizierung
- verbindungslose Integrität
- Vertraulichkeit
- Replay-Schutz
- eingeschränkte
 Datenfluss-Vertraulichkeit

PQC für IPsec Folie 7 von 27

IKEv2 Protokoll - RFC5996



PQC für IPsec Folie 8 von 27

IKEv2 Protokoll - RFC5996

PQC für IPsec Folie 8 von 27

Geeignete Kryptosysteme für PQC

PQC für IPsec Folie 9 von 27

Geeignete Kryptosysteme für PQC-Schlüsselaustausch

- Symmetrische Kryptographie
- Hashbasierte Kryptographie
- Multivariate Kryptographie
- Gitterbasierte Kryptographie
- Codebasierte Kryptographie

PQC für IPsec Folie 10 von 27

Geeignete Kryptosysteme für PQC-Schlüsselaustausch

- Symmetrische Kryptographie
- Hashbasierte Kryptographie
- · Multivariate Kryptographie
- Gitterbasierte Kryptographie
- Codebasierte Kryptographie

PQC für IPsec Folie 10 von 27

Codebasierte Kryptographie

- Fehlerkorrigierende Codes
- · Verschlüsselung: Hinzufügen von Bitfehlern
- Entschlüsselung: Entfernen der Bitfehler durch die Kenntnis des Codes

⇒ Vertreter: McEliece Kryptosystem, Niederreiter Kryptosystem

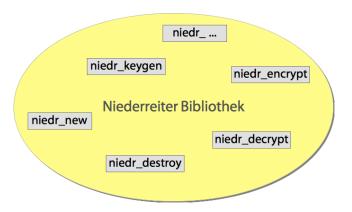
PQC für IPsec Folie 11 von 27

Codebasierte Kryptographie

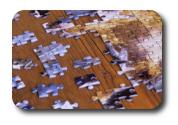
- Fehlerkorrigierende Codes
- · Verschlüsselung: Hinzufügen von Bitfehlern
- Entschlüsselung: Entfernen der Bitfehler durch die Kenntnis des Codes

⇒ Vertreter: McEliece Kryptosystem, **Niederreiter Kryptosystem**

PQC für IPsec Folie 11 von 27

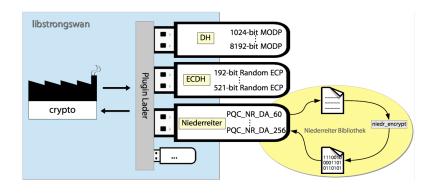


PQC-Implementierung


PQC für IPsec Folie 12 von 27

Niederreiter Kryptobibliothek

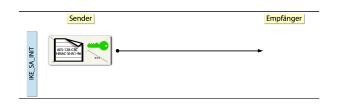
PQC für IPsec Folie 13 von 27

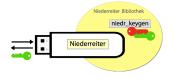


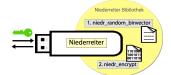
IPsec Erweiterung

PQC für IPsec Folie 14 von 27

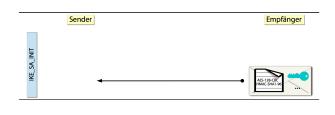
strongSwan Plugin

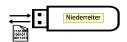





PQC für IPsec Folie 15 von 27

Erste IKE_SA_INIT Nachricht




PQC für IPsec Folie 16 von 27

PQC für IPsec Folie 17 von 27

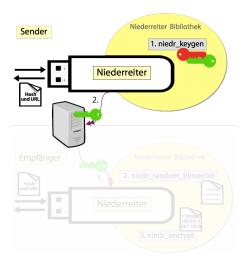
Problem: Große öffentliche Schlüssel

Bit-Sicherheit	DH	ECDH	Niederreiter
128	384	64	443.088
200	1.024	-	1.097.560
256	-	132	1.924.824

Tabelle: Datenmenge in Byte für einen Schlüsselaustausch vom Sender zum Empfänger.

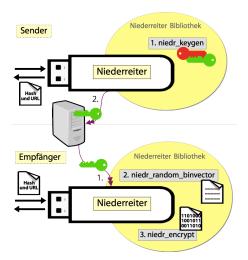
PQC für IPsec Folie 18 von 27

Lösung: Hash und URL


RFC5996

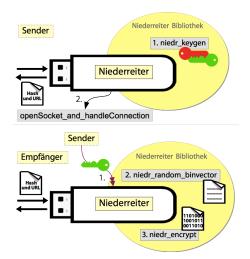
"by replacing long data structures with a 20-octet SHA-1 hash [...] of the replaced value followed by a variable-length URL that resolves to the [...] data structure itself."

PQC für IPsec Folie 19 von 27



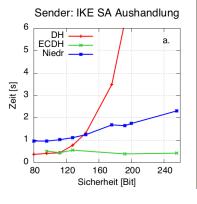
PQC für IPsec Folie 20 von 27

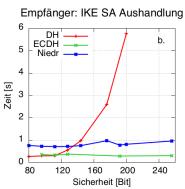
Lösung: Hash und URL



PQC für IPsec Folie 20 von 27

PQC für IPsec Folie 20 von 27




Evaluation und Vergleich

PQC für IPsec Folie 21 von 27

Latenz

PQC für IPsec Folie 22 von 27

Evaluation

- + Empfängerseite
- + Ver- und Entschlüsselung
- + Vergleich mit DH
- + Sicherheit gegen QC
- Schlüsselgenerierung
- Große Niederreiter-Schlüssel

PQC für IPsec Folie 23 von 27

Erreichte Ziele

- Ersetzung des DH-Schlüsselaustauschs mit PQC
- Erhaltung der Sicherheitsdienste von IPsec
- Keine Einführung neuer Angriffsmöglichkeiten
- ✓ Erste funktionierende PQC-IPsec-Verbindung

PQC für IPsec Folie 24 von 27

Lao Tzu

"If you do not change direction, you may end up where you are heading."

- Verbesserung des Prototypen
- Einführung von PQC in kryptographische Standards
- Reduzierung der öffentlichen Niederreiter-Schlüssel
- Integration von PQC in IKE_AUTH

PQC für IPsec Folie 25 von 27

PQC für IPsec Folie 26 von 27

Analyse von IPsec und der notwendigen Änderungen für PQC → Fokus auf *IKEv2*

Überblick geeigneter PQC Kandidaten für einen Schlüsselaustausch

Prototypische **Implementatierung** von PQC in IKEv2

→ *Niederreiter-Plugin* für strongSwan

Vergleich mit DH- und ECDH-Schlüsselaustausch-Plugins und **Evaluation**

PQC für IPsec Folie 27 von 27

Backup-Folien

PQC für IPsec Folie 28 von 27

Wirklich noch keine Quantencomputer?

PQC für IPsec Folie 29 von 27

Was bewiesen werden konnte

- 1998: experimentelle Realisierung von Grovers Algorithmus für die Durchsuchung einer Liste von ${\it N}=4$ Elementen nach einer speziellen Charakteristik [CGK98]
- \bullet 2001: experimentelle Realisierung von Shors Algorithmus für die Faktorisierung der Zahl 15 mithilfe von sieben Qubits [Van+01]
- 2011: experimentelle Realisierung von Shors Algorithmus für die Faktorisierung der Zahl 21 [Mar+12]
- 2013: effiziente Berechnung der Permanenten¹ einer quadratischen Matrix mithilfe eines nicht-universellen Quantencomputers [Til+13]

PQC für IPsec Folie 30 von 27

Auswirkung auf moderne Kryptographie

Schlüsselsuche	klassisch	Grover	
Anz. Schritte für 128 Bit	$ \frac{2^{128}}{2} = 2^{127} $	$\sqrt{\frac{2^{128}}{2}} = 2^{63,5}$	
Anz. Schritte für 256 Bit	$\frac{2^{256}}{2} = 2^{255}$	$\sqrt{\frac{2^{256}}{2}} = 2^{127,5}$	

Faktorisierung	klassisch	Shor
Anz. Schritte für 1024 Bit	$\approx 2^{90}$	$ 3,36 \cdot 10^7 [\approx 2^{25}]$
Anz. Schritte für 2048 Bit	$\approx 2^{117}$	$ 3,68 \cdot 10^8 [\approx 2^{28}]$

Tabelle: Durchschnittliche Anzahl an Rechenoperationen bei der Faktorisierung und der symmetrischen Schlüsselsuche.

PQC für IPsec Folie 31 von 27

Angreifermodelle

Angreifermodell 1

Ein Angreifer habe die Rolle eines Außenstehenden.

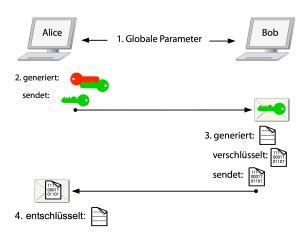
Als dieser habe er nur Zugriff auf die Subsysteme **zwischen den beiden IPsec-Endgeräten** der Kommunikationsteilnehmer, um durch IPsec gesicherte Nachrichten abzufangen. Er verfügt allerdings nicht über eine genügend große Verbreitung zur effektiven Unterbindung der IPsec-Kommunikation.

Sein Verhalten sei als **aktiv** und **modifizierend** charakterisiert. Die verfügbare Rechenkapazität und Zeit des Angreifers sei

komplexitätstheoretisch beschränkt.

PQC für IPsec Folie 32 von 27

Angreifermodelle


Angreifermodell 2

Ein Angreifer habe alle Rollen und Charakteristiken des Angreifermodells 1 und verfüge zusätzlich über einen **Quantencomputer**, auf dem er in Echtzeit Shors und Grovers Algorithmen ausführen kann.

PQC für IPsec Folie 33 von 27

Neuer IKE_SA_INIT PQC-Schlüsselaustausch

PQC für IPsec Folie 34 von 27

Code Parameter: $n, t \in \mathbb{N}$ mit $t \ll n$ als max. korrigierbare Fehler

Schlüsselgenerierung:

- Kontrollmatrix \mathbf{H}_{priv} eines binären Goppa Code \mathcal{G}
- Zufällige Permutationsmatrix P
- Zufällige invertierbare Matrix M

$$\Rightarrow H_{pub} = M \cdot H_{priv} \cdot P$$

- Öffentlicher Schlüssel: (H_{pub}, t)
- Privater Schlüssel: (M, $Dec_{\mathcal{G}}$, P), mit $Dec_{\mathcal{G}}$ als Dekodierungsalgorithmus für \mathcal{G}

PQC für IPsec Folie 35 von 27

Niederreiter mit binären Goppa Codes

Code Parameter: $n, t \in \mathbb{N}$ mit $t \ll n$ als max. korrigierbare Fehler

Schlüsselgenerierung:

- Kontrollmatrix \mathbf{H}_{priv} eines binären Goppa Code $\mathcal G$
- Zufällige Permutationsmatrix P
- Zufällige invertierbare Matrix M

$$\Rightarrow H_{pub} = M \cdot H_{priv} \cdot P$$

- Öffentlicher Schlüssel: (Hpub, t)
- Privater Schlüssel: (\mathbf{M} , $\mathbf{Dec}_{\mathcal{G}}$, \mathbf{P}), mit $\mathbf{Dec}_{\mathcal{G}}$ als Dekodierungsalgorithmus für \mathcal{G}

PQC für IPsec Folie 35 von 27

Verschlüsselung:

- Nachricht $\mathbf{m} \to \mathbf{e} \in \{0,1\}^n$ mit Gewicht t
- Syndrom $\mathbf{s} = \mathbf{H}_{pub} \cdot \mathbf{e}$

ntschlüsselung:

•
$$\mathbf{M}^{-1} \cdot \mathbf{s} = \mathbf{H}_{priv} \cdot \mathbf{P} \cdot \mathbf{e}$$

•
$$extstyle{ extstyle Dec}_{\mathcal{G}}(\mathsf{H}_{ extstyle priv} \cdot \mathsf{P} \cdot \mathsf{e}) = \mathsf{P} \cdot \mathsf{e}$$

$$\cdot P^{-1} \cdot P \cdot e = e$$

Verschlüsselung:

- Nachricht $\mathbf{m} \to \mathbf{e} \in \{0,1\}^n$ mit Gewicht t
- Syndrom $\mathbf{s} = \mathbf{H}_{pub} \cdot \mathbf{e}$

Entschlüsselung:

•
$$\mathbf{M}^{-1} \cdot \mathbf{s} = \mathbf{H}_{\textit{priv}} \cdot \mathbf{P} \cdot \mathbf{e}$$

•
$$\textit{Dec}_{\mathcal{G}}(H_{\textit{priv}} \cdot P \cdot e) = P \cdot e$$

•
$$\mathbf{P}^{-1} \cdot \mathbf{P} \cdot \mathbf{e} = \mathbf{e}$$

Multivariate Kryptographie

- Basieren auf Mengen von quadratischen Polynomen $p_1, \ldots, p_m \in \mathbb{K}[X_1, \ldots, X_n]$ über endlichen Körpern mit mehr als einer Variablen
- Verschlüsselung: Auswertung der polynomiellen Abbildung am Nachrichtenpunkt
- Entschlüsselung: Anwendung der inversen polynomiellen Abbildung durch Kenntnis einer speziellen Abbildungsstruktur
- + Sehr effiziente Ver- und Entschlüsselung
- + Frei für den kommerziellen Einsatz
- Wenig Vertrauen durch viele gebrochene Kryptosysteme
- Wenig Wissen durch Anwendung "junger" Mathematik

Multivariate Kryptographie

- Basieren auf Mengen von quadratischen Polynomen $p_1, \ldots, p_m \in \mathbb{K}[X_1, \ldots, X_n]$ über endlichen Körpern mit mehr als einer Variablen
- Verschlüsselung: Auswertung der polynomiellen Abbildung am Nachrichtenpunkt
- Entschlüsselung: Anwendung der inversen polynomiellen Abbildung durch Kenntnis einer speziellen Abbildungsstruktur
- + Sehr effiziente Ver- und Entschlüsselung
- + Frei für den kommerziellen Einsatz
- Wenig Vertrauen durch viele gebrochene Kryptosysteme
- Wenig Wissen durch Anwendung "junger" Mathematik

Multivariate Kryptographie

- Basieren auf Mengen von quadratischen Polynomen $p_1, \ldots, p_m \in \mathbb{K}[X_1, \ldots, X_n]$ über endlichen Körpern mit mehr als einer Variablen
- Verschlüsselung: Auswertung der polynomiellen Abbildung am Nachrichtenpunkt
- Entschlüsselung: Anwendung der inversen polynomiellen Abbildung durch Kenntnis einer speziellen Abbildungsstruktur
- + Sehr effiziente Ver- und Entschlüsselung
- + Frei für den kommerziellen Einsatz
- Wenig Vertrauen durch viele gebrochene Kryptosysteme
- Wenig Wissen durch Anwendung "junger" Mathematik

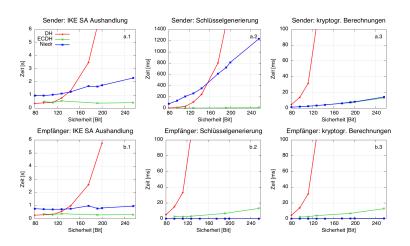
 \Rightarrow Vertreter: HFE Kryptosystem, Perturbed Matsumotu-Imai Plus

Gitterbasierte Kryptographie

- Basieren auf Gitterproblemen wie dem Shortest-Vector-Problem oder dem Closest-Vector-Problem
- Verschlüsselung: Addition speziell präparierter Vektoren auf den Nachrichtenvektor
- Entschlüsselung: Invertierung der Addition durch Kenntnisse über die speziell präparierten Vektoren
- \pm Starke Sicherheitsbeweise (dann allerdings nicht effizient)
- Sehr effiziente Ver- und Entschlüsselung (dann allerdings keine starken Sicherheitsbeweise)
- Wenig Vertrauen durch kurze Kryptoanalyse-Vergangenheit
- Patentrechtliche Abhängigkeiten

Gitterbasierte Kryptographie

- Basieren auf Gitterproblemen wie dem Shortest-Vector-Problem oder dem Closest-Vector-Problem
- Verschlüsselung: Addition speziell präparierter Vektoren auf den Nachrichtenvektor
- Entschlüsselung: Invertierung der Addition durch Kenntnisse über die speziell präparierten Vektoren
- \pm Starke Sicherheitsbeweise (dann allerdings nicht effizient)
- ± Sehr effiziente Ver- und Entschlüsselung (dann allerdings keine starken Sicherheitsbeweise)
- Wenig Vertrauen durch kurze Kryptoanalyse-Vergangenheit
- Patentrechtliche Abhängigkeiten


Gitterbasierte Kryptographie

- Basieren auf Gitterproblemen wie dem Shortest-Vector-Problem oder dem Closest-Vector-Problem
- Verschlüsselung: Addition speziell präparierter Vektoren auf den Nachrichtenvektor
- Entschlüsselung: Invertierung der Addition durch Kenntnisse über die speziell präparierten Vektoren
- \pm Starke Sicherheitsbeweise (dann allerdings nicht effizient)
- ± Sehr effiziente Ver- und Entschlüsselung (dann allerdings keine starken Sicherheitsbeweise)
- Wenig Vertrauen durch kurze Kryptoanalyse-Vergangenheit
- Patentrechtliche Abhängigkeiten
- ⇒ Vertreter: Number Theory Research Unit (NTRU) Kryptosystem,

PQC für IPsec Folie 39 von 27

Latenz: IKE SA Aushandlung

Bit-Sicherheit	S	Sender [ms]			Empfänger [ms]		
	DH	ECDH	Niedr	DH	ECDH	Niedr	
80	367,0	_	966,5	275,3	-	764,7	
96	410,3	513,6	960,9	300,7	359,1	728,5	
112	438,3	444,3	1.025,0	310,7	333,9	716,2	
128	775,7	555,9	1.114,1	564,5	380,0	721,9	
144	1.322,9	-	1.249,1	977,1	-	759,1	
176	3.487,9	-	1.684,7	2.597,7	-	980,0	
192	-	389,3	1.650,8	_	295,4	781,8	
200	7.689,9	-	1.748,1	5.759,5	-	819,6	
256	-	423,2	2.311,1	-	313,3	965,0	

Tabelle: Zeiten für eine IKE SA Aushandlung mit den drei Plugins Niederreiter, DH und ECDH.

PQC für IPsec Folie 40 von 27

Latenz: Schlüsselgenerierung

Bit-Sicherheit	S	Sender [ms]			Empfänger [ms]		
	DH	ECDH	Niedr	DH	ECDH	Niedr	
80	5,0	-	80,2	5,1	-	0,02	
96	15,7	6,7	134,2	15,2	2,8	0,02	
112	33,6	2,6	210,0	33,3	2,6	0,02	
128	110,0	3,7	264,8	107,8	3,3	0,02	
144	247,1	-	353,2	246,7	-	0,03	
176	805,3	-	611,7	791,1	-	0,03	
192	-	6,8	723,9	-	6,8	0,03	
200	1.845,7	-	813,9	1.827,1	-	0,03	
256	-	14,9	1.234,4	-	13,2	0,05	

Tabelle: Zeiten für die Schlüsselgenerierung mit den drei Plugins Niederreiter, DH and ECDH.

PQC für IPsec Folie 41 von 27

Latenz: kryptographische Berechnungen

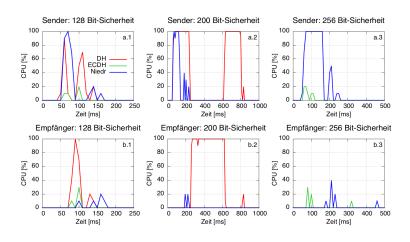

Bit-Sicherheit	S	Sender [ms]			Empfänger [ms]		
	DH	ECDH	Niedr	DH	ECDH	Niedr	
80	4,5	-	1,4	4,4	-	0,02	
96	13,8	2,1	1,9	13,8	2,2	0,03	
112	31,8	2,6	2,5	31,6	2,7	0,03	
128	105,2	3,4	3,4	103,9	4,1	0,04	
144	245,5	-	4,3	243,7	-	0,06	
176	785,2	-	6,3	786,9	-	0,23	
192	-	7,0	7,7	-	6,8	0,26	
200	1.837,0	-	8,1	1.834,6	-	0,30	
256	-	13,2	14,3	-	12,9	0,41	

Tabelle: Zeiten für die kryptographischen Berechnungen mit den drei Plugins Niederreiter, DH and ECDH.

PQC für IPsec Folie 42 von 27

Evaluation: Rechenleistung

PQC für IPsec Folie 43 von 27

Referenzen I

Daniel J. Bernstein, Johannes Buchmann und Erik Dahmen. *Post Quantum Cryptography*. 1st. Berlin, Heidelberg: Springer-Verlag, 2009, isbn: 978-3-540-88701-0, doi: 10.1007/978-3-540-88702-7.

Isaac L. Chuang, Neil Gershenfeld und Mark Kubinec. »Experimental Implementation of Fast Quantum Searching«. In: *Phys. Rev. Lett.* 80 (15 Apr. 1998), S. 3408–3411. url: http://link.aps.org/doi/10.1103/PhysRevLett.80.3408 (besucht am 15.07.2013).

Lov K. Grover. »A fast quantum mechanical algorithm for database search«. In: Proceedings of the twenty-eighth annual ACM symposium on Theory of computing. STOC '96. Philadelphia, Pennsylvania, USA: ACM, 1996, S. 212–219. isbn: 0-89791-785-5. url: http://doi.acm.org/10.1145/237814.237866 (besucht am 11.07. 2013)

C. Kaufman u. a. RFC5996 - Internet Key Exchange Protocol Version 2 (IKEv2). Sep. 2010. url: $https://tools.ietf.org/html/rfc5996 \ (besucht am 18.05.2013).$

S. Kent und K. Seo. RFC4301 - Security Architecture for the Internet Protocol. Dez. 2005. url: $https://tools.ietf.org/html/rfc4301 \ (besucht am 18.06.2013).$

Enrique Martin-Lopez u.a. »Experimental realization of Shor's quantum factoring algorithm using qubit recycling«. In: Nature Photonics 6 (Nov. 2012), S.773–776. url: $http://dx.doi.org/10.1038/nphoton.2012.259 \ (besucht am 15.07.2013).$

PQC für IPsec Folie 44 von 27

Referenzen II

Peter W. Shor. *Algorithms for Quantum Computation: Discrete Logarithms and Factoring«. In: Foundations of Computer Science, 1994 Proceedings., 35th Annual Symposium on Foundations of Computer Science. Santa Fe, NM: IEEE Computer Society Press, Nov. 1994, S. 124–134. url: http://dx.doi.org/10.1109/SFCS.1994.365700 (besucht am 10.09.2013).

PQC für IPsec Folie 45 von 27