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Abstract: Fingerprinting techniques are receiving widespread attention in the field of
information security. In this paper we argue that they may be of specific interest for the
field of network forensics. In three case studies, we explore the use of fingerprinting
techniques to improve and extend current investigative methods and showcase why
fingerprinting allows for more target-oriented investigations than current practices. In
each case study, we review the applicability of the current state of the art from the field
of information security. The paper is intended to be a starting point for a discussion
about the opportunities and concerns that may result from using evidence gained by
fingerprinting techniques in criminal investigations.

1 Introduction

In the late 19th century it was discovered that fingerprints of humans are a distinctive
biometric trait [Fau80, Gal92]. Today fingerprints play an important role in criminal in-
vestigations, and they serve as convincing evidence for the association of a suspect with a
crime in court all over the world.

Apart from the biometric fingerprints mentioned above the computer science community is
also aware of device fingerprints that capture characteristic traits of devices in a technical
system. The notion of such fingerprints came up in the era of the Cold War, where defense
forces became interested in deducing the type and make of missiles and satellites solely
based on their radio echo. It was found that different devices exhibit distinctive patterns,
“radar fingerprints”, that can be observed during their flight [Lac67].

Fingerprinting techniques are increasingly gaining attention: According to Google Scholar,
in the years 2010, 2011 and 2012 more than 200 security-related academic papers contain-
ing the term “fingerprinting” in the title have been published annually. The motives for
studying these techniques relate to both, their opportunities, e. g., their utility for network
intrusion detection systems [HBK04] or as an additional authentication factor [XGMT09],
as well as to the risks entailed, e. g., data leakage [DCGS09] or infringement of personal
privacy [BFGI11].

Based on talks with lawyers and investigators we believe that the utility of fingerprinting
for criminal investigations is relatively unknown so far. Historically, computer forensics
was mainly concerned with analyzing hard disks found in computers seized by means of a
warrant, e. g., after raiding the home of a purported suspect [Cas09]. However, due to full-
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disk encryption (FDE), obtaining incriminating data from seized hard disks has become
more difficult recently [CFGS11]. Moreover, data is increasingly stored “in the cloud”,
where legal accessibility often depends on coordination of and cooperation between au-
thorities and service providers in multiple countries. Due to unresolved legal issues relat-
ing to such multi-jurisdiction investigations policy makers are concerned that investigators
may be barred from obtaining relevant pieces of evidence in the future [CL10].

Due to this development investigators have started to turn their attention to the field of
network forensics, which studies the probative value of network traffic in criminal investi-
gations [Cas04, DH12]. For this purpose law enforcement agencies (LEAs) have several
investigative measures at their disposal (in the following, we use Germany as an exam-
ple): Firstly, given an IP address that has been involved in criminal activities they can
request customer subscription data from an ISP to determine the identity of the respective
account holder (“Bestandsdatenauskunft”, cf. § 113 TKG and § 100j StPO). Secondly,
they can request an ISP to perform lawful interception, i. e., to store and disclose the net-
work traffic of a specific customer (“Telekommunikationsüberwachung”, cf. §§ 100 a and
100 b StPO). Having access to the network traffic, investigators are facing two common
challenges: Firstly, they may want to establish an association between criminal activities
detected on the network and an actual perpetrator (C1: “who did it?”). Secondly, they
may be struggling to find evidence for criminal activities, when traffic is encrypted during
transport (C2: “what was done?”).

Further, policy makers around the world have tried to overcome these challenges by in-
troducing new data retention laws (“Vorratsdatenspeicherung”) as well as legalizing the
use of police-operated malware to intercept traffic before it is encrypted and sent over the
network (“Bundestrojaner”). Critics argue that such efforts are disproportionate, because
they lay the ground for uncontrolled surveillance, which also resulted in strict decisions of
the German constitutional court (BVerfG, 27.2.2008 – 1 BvR 370/07; BVerfG, 2.3.2010
– 1 BvR 256/08). Before considering the deployment of disproportionate measures we
suggest to fully leverage the potential of already existing investigative measures that are
both, more target-oriented and incident-related. In this paper we demonstrate in three case
studies that the application of fingerprinting techniques can play a vital role in this regard.

The rest of the paper is organized as follows: We outline the commonly used fingerprinting
approach in Sect. 2, proceeding with our three case studies in Sects. 3, 4 and 5. After that,
we discuss limitations and concerns in Sect. 6, before we conclude the paper in Sect. 7.

2 Fundamentals: Fingerprinting and Related Techniques

Fingerprinting techniques allow for the (re-)identification of a subject or an object (or
“entity” in general) based on characteristic traits, i. e., its fingerprint. In contrast to explicit
identifiers such as a serial number the fingerprint typically captures implicit properties.

Typically the fingerprinting approach consists of two stages. In the first stage, also called
training stage, the fingerprints of a set of entities are recorded and stored together with
the identity of the entity in a database. In the second stage, the identification stage, the



characteristics of an entity whose identity is unknown are observed. The identity of the
unknown entity is then inferred by comparing its fingerprint with all known fingerprints.

Fingerprinting research has been called both, an art as well as engineering [TDH03]. The
art refers to designing a set of suitable features that facilitates identification of entities.
Like in biometrics, good features are distinctive and permanent at the same time [JRP04],
i. e., the features of each entity are characteristic enough so that one can differentiate var-
ious entities based on them, while one given entity exhibits the same (or at least a very
similar) fingerprint every time it is encountered. On the other hand, the efficient extraction
and robust matching of fingerprints is facilitated by the application of concepts drawn from
engineering, e. g., pattern matching, statistical modeling and machine learning.

Watermarking and Correlation Techniques We point out that the fingerprinting ap-
proach outlined above is different from watermarking techniques [WCJ07, HB11, HKB12,
HB13], which allow an investigator to trace back received packets to their true source, even
when an adversary obfuscates his identity by using multi-hop anonymization networks
such as Tor (http://torproject.org, [DMS04]) or compromised hosts, so-called “stepping
stones” [YE00, ZP00]. To this end the investigator tags singular network flows at one
location, e. g., by means of artificially delaying packets, and tries to detect them again at a
different location, e. g., on the dial-up line of a household. If the watermark is embedded
at a location, where the fact that all network traffic relates to criminal activities is known
for sure (e. g., on the uplink of an online shop for hard drugs), the investigator can use this
information as indication that a suspect has been involved in criminal activities.

Watermarking techniques require active interference in network communications, which
may be problematic from a legal perspective. Although less effective, flow correlation
techniques [WRW02, JWJ+13] may be more suitable for the purpose of establishing an
association between criminal activities and a suspect, because they can be applied by a
passive observer. Flow correlation techniques extract and match already existing patterns
by observing packet timings and traffic volumes. However, like watermarking techniques
they require the investigator to have the capability to observe traffic at (at least) two loca-
tions in the network at the same time: Apart from intercepting the traffic of the suspect –
which is also a requirement for fingerprinting techniques – investigators have to addition-
ally tap the traffic of the server, whose location is typically either unknown (e. g., in the
“cloud”, where virtual machines are relocated on the fly) or under the authority of a foreign
jurisdiction. Therefore, the utility of watermarking and flow correlation techniques for
criminal investigations is more limited in comparison to fingerprinting techniques, which
can be applied by a passive observer with access to a single site only.

3 Case Study 1: Inferring Content of Encrypted Communications

In this first case study we demonstrate the utility of fingerprinting for Challenge C2: “what
was done?”. We assume a scenario in which investigators suspect that Mallory, whose
identity has been disclosed to police by his ISP, is consuming child pornography on the
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Figure 1: Website Fingerprinting Scenario

Internet. The prosecutor wants to obtain corroborating evidence that confirms the accu-
sations before bringing the case to court. Thus, the objective of the prosecution is to find
evidence that specific activities have been carried out by the suspect, e. g., that he vis-
ited a website, downloaded a movie or entered specific search terms into a search engine
[OLL11]. A classical investigative measure involving digital forensics would consist in
raiding Mallory’s apartment, seizing his computer and trying to extract the contents of
the browser history and cache files [Per09]. However, in our scenario no evidence can be
obtained, because Mallory uses FDE on his machine.

As an alternative measure investigators might opt for lawful interception, i. e., compel
Mallory’s ISP to tap and disclose his network traffic to the LEA. However, in our case
study this approach will not result in any corroborative evidence, either, because Mallory
makes sure that all potentially incriminating activity is perpetrated via encrypted channels:
He uses the VPN service of an offshore provider whenever he connects to the Internet, and
“serious business” is conducted only via the Tor network (cf. Fig. 1).

Apparently, in such a scenario the only opportunity for law enforcement to obtain evidence
for Mallory’s criminal involvement seems to consist in questionable measures like infect-
ing his machine with police-operated malware to perform a remote search. However, there
are fingerprinting techniques that can be applied by investigators to infer (part of) Mal-
lory’s activities, e. g., whether he accessed a specific site or content, solely based on the
traffic metadata that is not encrypted. This approach is known as traffic analysis [Ray00].

3.1 Packet-based Website Fingerprinting

Packet-based website fingerprinting exploits the fact that many websites are a unique com-
position, consisting of multiple source and media files. The concrete number and size of
the individual files of a site has been shown to be a distinctive and permanent feature suit-
able for fingerprinting [Hin02, SSW+02]. When a site is downloaded within an encrypted
channel such as a VPN, the sizes of individual files cannot be determined by an observer
anymore. However, fingerprints can still be built from features derived from the encrypted
TCP flows. Inter-arrival times of packets have been shown to be characteristic [BLJL05],
but due to network latency this feature is not very robust. The distribution of the size of
the IP packets is a more promising candidate (cf. Fig. 2).
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Figure 2: Characteristic distribution of IP packet sizes due to packet fragmentation [HWF09]

In [LL06] Liberatore and Levine, who focus on IP packet sizes and packet direction, have
shown for a sample of 1000 sites that observers can infer the websites downloaded via
OpenSSH tunnels with a Naı̈ve Bayes classifier or the Jaccard index. Their best technique
scores a website identification accuracy of 73 %. In a similar experiment inspired by their
work we have improved the detection accuracy to 97 % by applying suitable transforma-
tions to the raw data [HWF09]. Our results indicate that fingerprinting is not limited to
OpenSSH tunnels, but also effective for other popular techniques (e. g., IPsec and Open-
VPN). Based on our dataset, the work of Panchenko et al. is one of the first to demonstrate
that fingerprinting may also work in the Tor network [PNZE11]. Since then this problem
(also termed “encrypted page identification” [XRYX13]) has received much attention (cf.
[DCRS12] and [WG13] for an overview).

3.2 DNS-based Website Fingerprinting

DNS-based website fingerprinting serves a different purpose. It can be useful for forensic
investigators that need to determine the search terms of a suspect whose traffic has been
seized using lawful interception. Until recently, traffic to web search engines was not
encrypted. However, in 2013 the leading search provider Google enabled SSL for all
queries by default, which obscures the entered query terms in the intercepted traffic. The
only remaining option for investigators to obtain the queries of a suspect consists in forcing
Google to disclose them, which may be infeasible due to legal cross-border issues.

However, under certain circumstances DNS-based website fingerprinting can be used to
infer the search terms entered into search engines, even when requests to the search engine
are encrypted with HTTPS. This possibility was first studied by Krishnan and Monrose
[KM10, KM11], who present results for the Firefox and Chrome browsers with the Google
search engine. DNS-based fingerprinting exploits the fact that some browsers not only
issue the DNS queries required to load the content embedded in the currently rendered
site, but they also issue DNS queries for the links (<a> tags) that are contained in a site.
The rationale for this DNS pre-resolution is to speed up the download of the next site when
the user clicks a link. In addition, the Chrome browser tries to guess the links the user will
most likely click on, in order to download the corresponsing sites in the background (DNS
queries due to “site prefetching”).



Table 1: Inferring Search Terms via DNS-based Website Fingerprinting on Google (HTTPS enabled)
Browser Link pre-resolution Site prefetching Speculative resolution

Firefox 25.0.1 no (HTTP only) no yes
Chrome 31.0.1650.57 no (HTTP only) yes yes
Safari 6.1 (8537.71) no (HTTP only) no no

Krishnan and Monrose demonstrate that DNS-based fingerprinting works especially well
for search engines, whose primary purpose is to display lists of links for the relevant sites
and for ads. For many search queries the set of sites displayed on the first results page is
a distinctive and stable feature. In order to infer the search terms by DNS-based finger-
printing, the investigator would have to issue the interesting queries himself and establish
a database containing the observed DNS queries. Inferring the search terms may also be
feasible if the database is incomplete, because in some cases the DNS queries issued by
the browser literally repeat the search terms (e. g., searching for “gun powder” may induce
the search engine to insert an ad for the site gunpowder.buycheaper.biz).

Moreover, some browsers, i. e., Firefox, Chrome, and Safari, allow the user to enter search
terms directly into the address bar. This comfortable feature can also cause the search
terms to be leaked via DNS queries, when the browser cannot rule out that an entered
keyword is the hostname of a web server (speculative resolution).

The effectiveness of DNS-based website fingerprinting is subject to technical limitations.
First of all, search engines do not necessarily display the same search results to all users,
i. e., it may be difficult to match search queries based on the observed DNS queries. More-
over, in recent versions browser manufacturers have turned off pre-resolution for HTTPS
sites for privacy reasons, i. e., the pre-resolution based technique is not effective any more.
However, in our own experiments (Nov. 2013) we could still observe DNS queries due to
speculative resolution and due to site prefetching (cf. Table 1).

4 Case Study 2: Device-based Ascription of Activities

In the second case study we showcase how fingerprinting techniques can be leveraged to
address Challenge C1: “who did it?”. We assume that law enforcement has managed to
gain authority over an underground marketplace that specializes in illegal drugs. Instead
of taking the site down, investigators intercept and retain all incoming traffic on the web
servers for a while in order to obtain new leads for tracking down the dealers. To this
end they request customer subscription data from the respective ISPs for the observed
source IP addresses. Of particular interest is one of the more active customers, Carol, who
shares a broadband Internet connection with her unsuspecting flat mate Alice. Based on
the intercepted traffic, investigators do know that the criminal activity originated from their
apartment, however they do not know who of the two flat mates is involved. Police forces
raid the apartment and seize the laptops of Alice and Carol, who deny any involvement in
criminal activities. The forensic analysis of the hard disks does not produce any evidence,



Table 2: Device fingerprinting with individual (I) and class (C) characteristics
Trait Involvement Source

I Skew of real-time clock [KBC05] active probing Manuf.
C TCP stack of operating system [CL94] active probing OS
C TCP stack of operating system [Bev04] passive logging OS
C JS benchmark [MBYS11], HTML 5 rendering [MS12] active website HW/SW
I Browser fingerprints [Eck10] active website SW
C TCP flow characteristics during surfing [YHMR09] passive logging SW

either: Alice, whose laptop is secured using FDE, denies to disclose her password, and on
Carol’s machine no traces of activity can be found, because she always entered the “private
browsing” mode before engaging in unlawful endeavors.

However, in this scenario investigators may still be able to determine the computer from
which the criminal activity originated, because different devices may exhibit different be-
havior on the network, resulting in a characteristic device fingerprint. Device fingerprints
are present due to tolerances in the manufacturing process and differences in hardware
and software implementations. They can either capture class characteristics, which are
emitted by all devices that share the same specification, or individual characteristics,
which allow to uniquely identify a single device [Cas11, 17].

In order to leverage device fingerprints to ascribe the criminal activities to one of the
two computers in question, investigators have to extract the browser and operating system
fingerprints from the incoming requests while they intercept the traffic of the underground
marketplace. After the raid investigators can compare the fingerprints they observed for
the requests that led them to Alice and Carol (e. g., “Firefox browser on a Windows PC”)
with the hard- and software configuration of the two suspects. If only one of the two
computers is found to match the specification indicated by the fingerprint, this can serve
as evidence for involvement.

In the following we will briefly survey the most relevant device fingerprinting approaches
before we provide results from our own experiments with DNS-based fingerprinting.

4.1 Existing Device Fingerprinting Techniques

Table 2 showcases the landscape of fingerprinting techniques that could be leveraged by
investigators that want to associate a specific device with certain actions. Active device
fingerprinting techniques provoke a device to emit its fingerprint in response to specially
crafted probing packets or by explicitly reading out certain properties. Comer and Lin
were among the first to observe that the TCP stacks of operating systems respond differ-
ently when they receive spurious packets and that they also vary in terms of timeouts and
retransmission behavior [CL94], which can serve as a class characteristic. Kohno et al.
discovered that multiple desktop machines can be remotely differentiated due to skew in
their real-time clocks [KBC05]. While this constitutes a powerful individual characteris-
tic, it cannot be observed passively in a reliable manner. The trend for tighter integration



of browsers with the operating system has also created new fingerprinting opportunities
that emit class characteristics: Mowery et al. show that hardware/software configurations
can be either differentiated with a crafted JavaScript benchmark embedded in a website
[MBYS11] or by analyzing the anti-aliasing artifacts of text that is rendered using the
canvas tag in HTML 5 [MS12]. Summarizing the results of the “EFF Panopticlick” exper-
iment Eckersly illustrates that individual browsers – and sometimes even devices – can be
re-identified with high probability by a website that actively enumerates the list of installed
browser plug-ins and system fonts [Eck10].

A limitation of active techniques is the fact that they require active involvement on the part
of the investigator. In contrast, passive device fingerprinting needs only traits that are
“voluntarily” provided by a device and thus collected easily. A well-known property of
this kind is the “user agent” string in HTTP requests, which explicitly states browser and
operating system. The information provided there can be forged easily, though, i. e., its
probative value is questionable. More reliable are unavoidably exhibited implicit behav-
ioral traits, e. g., the class characteristics that allow for passive operating system detection
with the tool p0f (http://lcamtuf.coredump.cx/p0f3/) based on characteristic implemen-
tations of the TCP/IP stack [Bev04]. Similar techniques can be applied to differentiate
various browser types [YHMR09].

4.2 DNS-based Device Fingerprinting

DNS-based device fingerprinting is a passive technique that exploits the fact that operating
systems and browsers can be identified via the hostnames they resolve during regular back-
ground activities, e. g. time synchronization and polling for software updates [MYK13].
The application of this technique requires LEAs to access the DNS queries of a suspect,
either by way of lawful interception or by legally forcing the ISP to record and disclose the
DNS traffic of a suspect. Investigators can cross-correlate the class characteristics inferred
by DNS-based fingerprinting with other evidence. For instance, they can detect faked user
agent strings, if there are no DNS queries that conform to the stipulated operating system
or browser. The results of our experiments, in which we observed the background traffic
of various browsers on multiple platforms, indicate that DNS-based device fingerprinting
is feasible for common configurations (cf. Tables 3 and 4 in the Appendix).

5 Case Study 3: Behavior-based Ascription of Activities

In the third case study we assume a similar scenario as in Case Study 2, however, this time
investigators do not succeed in extracting device fingerprints from the requests issued to
the underground marketplace. Nevertheless, they may still be able to solve Challenge C1
(“who did it?”) by applying behavior-based fingerprinting techniques, which allow to link
multiple surfing sessions of the same user as well as to distinguish sessions of different
users solely based on (alleged) characteristic web usage patterns.



In this case we assume that investigators have access to Alice’s and Carol’s traffic via
lawful interception. Starting off with an anonymous behavioral fingerprint of a surfing
session that contains an incriminating action (the “initial fingerprint”), the objective of the
investigator consists in identifying additional surfing sessions of the (still not identifiable)
suspect that match the initial fingerprint (“suspect’s sessions”). Note that it is not required
that all sessions linked to the initial fingerprint contain instances of incriminating behavior;
they will be useful for investigators even if they contain only innocuous behavior.

Once a sufficiently large number of suspect’s sessions has been acquired, there are two
conditions that may indicate to investigators that Carol, and not Alice, is the offender: ei-
ther an intersection attack or unintentional identity disclosure. For an intersection attack
the investigators analyze the temporal usage patterns that emerge from the suspect’s ses-
sions in order to infer at what times the offender was online. This information can be used
in concert with classical investigative techniques, such as physical observation or question-
ing, to infer the identity of the offender, e. g., because Alice may have an alibi for some of
the points in time. Intersection attacks have been applied with success in various contexts
[BL02, KAP02, KAPR06, PGT12]. The second condition occurs when Carol discloses
her identity in one of her sessions that have been linked to the suspect’s sessions via the
initial fingerprint, e. g., by logging on to a shopping portal or mail account with her per-
sonal credentials. If the credentials are unavailable, e. g., due to encryption with HTTPS,
investigators can still compel the respective service provider to disclose the identity of the
account based on the observed date and time of the log-in.

Note that investigators will only be able to extract the “initial fingerprint” if Carol engages
at least one more time in incriminating activity (e. g., by visiting the underground market-
place) after lawful interception of traffic has commenced. In some cases, such as our drug
trafficking scenario, this is a reasonable assumption.

Previous research suggests that behavior-based ascription of activities is possible in prac-
tice, i. e., multiple sessions of the same user can be linked due to characteristic website
visitation patterns. The behavioral fingerprint of a user consists of the set of visited
websites, which are the result of the distinct set of his personal interests. The potential
of behavioral fingerprints for differentiating users can already be appreciated by cursory
visual inspection of individual sessions (see Fig. 3).

Yang shows how machine learning techniques used for association rule mining can be
leveraged to extract and match such behavioral patterns [Yan10]. In a controlled setting
with up to 100 concurrent users the predictive accuracy of her techniques reaches up to
87 % when profiles are built using 100 training sessions per user. Accuracy drops to only
62 % if only a single training session is available.

However, according to our own research, which has been published in detail in [BHF12,
HBF13], extracting and matching behavioral fingerprints is feasible even when only a
single session is available. We reach this conclusion based on our experiments with an
anonymized dataset that contains the DNS queries issued by a set of 3862 enrolled students
over the course of two months. For each user we extract a behavioral fingerprint (queried
DNS hostnames and access frequencies) from one of his sessions, which is then used
to identify the remaining sessions of the same user. With a Multinomial Naı̈ve Bayes
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Figure 3: Higher visual similarity between website visitation behavior in two sessions of the same
user (left-hand side) in comparison to sessions of different users (right-hand side)

classifier [MRS08, 258] we obtain cross-validated precision and recall values beyond 70 %
for sessions of up to 24 hours and 3000 concurrent users. Further experiments have shown
that accuracy of linking improves for smaller sets of users, e. g., it reaches 90 % for 100
concurrent users.

6 Limitations and Concerns

While we argue that fingerprinting techniques may be a suitable tool to improve the foren-
sic tool-chain we stress that they are also subject to considerable limitations and thus have
to be adopted with care in criminal investigations.

Firstly, the probative value of the results obtained by fingerprinting is often unclear. On
the one hand, techniques that involve machine learning algorithms may suffer from poor
explainability, when the investigator cannot fully explain how the classifier reached a de-
cision. On the other hand, high accuracy values obtained in scientific papers may convey
a certain level of confidence and objectivity, but usually they are only meant to give an
indication of the performance of a technique for a specific closed-world scenario in a con-
trolled setting, i. e., it is unknown how they perform “in the wild”. Standardized corpora
and strict evaluation methodologies have to be established to increase the confidence of
the results.

Secondly, once law enforcement agencies have learned to appreciate the qualities of fin-
gerprinting techniques for the purpose of criminal investigations, security policy makers
may move forward and call for mandatory online dragnet investigations based on finger-
prints, which could even be argued to be “privacy-preserving” – because only abstract
fingerprints and not the actual content are screened, after all. Nevertheless such measures
would be the equivalent of pre-emptive blanket surveillance. Therefore, instead of only
focusing on the improvement of fingerprinting techniques researchers should also work on
usable countermeasures to keep the balance.



7 Conclusions

In this paper, we have explored the adoption of state of the art fingerprinting techniques
from information security research to the field of network forensics. Our analysis suggests
that fingerprinting can be used to establish associations between criminal activities and
their perpetrators as well as to find corroborative evidence for criminal activities even if
only encrypted traffic can be observed. In two of our three case studies (cf. Sects. 3 and
5) we have shown that evidence can be obtained with fingerprinting that would otherwise
require measures of questionable proportionality, such as data retention or remote search
via state malware. In our third scenario (cf. Sect. 4) no client-side lawful interception is
required at all.

These findings suggest that, instead of deploying heavy artillery, the adoption of finger-
printing techniques may lead the way to more target-oriented and incident-related investi-
gations in the future and might also become a viable enhancement for current investigative
methods. However, several challenges must be met before fingerprinting will become de-
pendable and practical for these scenarios.
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A Results for DNS-based Device Fingerprinting

In order to evaluate the feasibility of DNS-based device fingerprinting we recorded the
hostnames that are resolved autonomously in the background by commonly used web
browsers and desktop operating systems. To this end we have performed experiments with
MS Internet Explorer 8 and 10, Mozilla Firefox 25, Apple Safari 6.1, Google Chrome
31.0.1650.57 that have been executed on all supported platforms from the set of MS Win-
dows XP SP3, MS Windows 7 SP1, MS Windows 8, Apple MacOS 10.8.5, Ubuntu 12.04,
CentOS 6.3, and openSUSE 12.2.

According to the results for the web browsers (cf. Table 3), the studied versions of the Fire-
fox, Internet Explorer 10 and Chrome browsers can be detected based on autonomously
issued queries, while Safari and Internet Explorer 8 cannot be detected precisely. More-
over, as shown in Table 4, regardless of the type of browser used, the majority of the
operating systems can be detected due to characteristic DNS queries; only Windows XP
and openSUSE do not issue characteristic queries in the background.

Table 3: DNS-based fingerprinting of common desktop web browsers; emphasized hostnames were
observed for a single browser only and don’t offer any web content intended for human users.
Browser Hostnames

Firefox aus3.mozilla.org download.cdn.mozilla.net fhr.data.mozilla.com services.addons.mozilla.org
versioncheck-bg.addons.mozilla.org versioncheck.addons.mozilla.org addons.mozilla.org
cache.pack.google.com download.mozilla.org [x].pack.google.com safebrowsing-cache.google.com
safebrowsing.clients.google.com tools.google.com

IE 8 urs.microsoft.com

IE 10 iecvlist.microsoft.com t.urs.microsoft.com ctldl.windowsupdate.com mscrl.microsoft.com
urs.microsoft.com www.bing.com

Safari apis.google.com clients.l.google.com clients1.google.com safebrowsing-cache.google.com
safebrowsing.clients.google.com ssl.gstatic.com www.google.com www.google.de www.gstatic.com

Chrome safebrowsing.google.com translate.googleapis.com [xxxxxxxxxx].[domain] apis.google.com
cache.pack.google.com clients[x].google.com [x].pack.google.com safebrowsing-cache.google.com
safebrowsing.clients.google.com ssl.gstatic.com tools.google.com www.google.com www.google.de
www.gstatic.com

Symbols: [x]: placeholder for varying numbers/strings; [domain]: placeholder for configured search domain.



Table 4: DNS-based fingerprinting of desktop operating systems; emphasized hostnames were ob-
served for a single operating system only and don’t offer any web content intended for human users.

Windows XP
U update.microsoft.com download.windowsupdate.com
T time.windows.com

Windows 7
U au.download.windowsupdate.com update.microsoft.com download.windowsupdate.com

ctldl.windowsupdate.com
T time.windows.com
P watson.microsoft.com
N ipv6.msftncsi.com teredo.ipv6.microsoft.com www.msftncsi.com dns.msftncsi.com isatap.[domain]

wpad.[domain]
M gadgets.live.com weather.service.msn.com money.service.msn.com

Windows 8
U au.v4.download.windowsupdate.com ds.download.windowsupdate.com ctldl.windowsupdate.com

bg.v4.emdl.ws.microsoft.com fe[x].update.microsoft.com fe[x].ws.microsoft.com
definitionupdates.microsoft.com spynet2.microsoft.com

T time.windows.com
P watson.telemetry.microsoft.com sqm.telemetry.microsoft.com
N teredo.ipv6.microsoft.com www.msftncsi.com dns.msftncsi.com isatap.[domain] wpad.[domain]
C mscrl.microsoft.com crl.globalsign.net ocsp.verisign.com evsecure-ocsp.verisign.com

evintl-ocsp.verisign.com
L clientconfig.passport.net login.live.com go.microsoft.com
M ssw.live.com client.wns.windows.com appexbingfinance.trafficmanager.net

appexbingweather.trafficmanager.net appexsports.trafficmanager.net appexdb[x].stb.s-msn.com
de-de.appex-rf.msn.com finance.services.appex.bing.com financeweur[x].blob.appex.bing.com
weather.tile.appex.bing.com

MacOS X
U swscan.apple.com swdist.apple.com swcdnlocator.apple.com su.itunes.apple.com swcdn.apple.com

r.mzstatic.com s.mzstatic.com metrics.mzstatic.com
T time.euro.apple.com
P radarsubmissions.apple.com internalcheck.apple.com securemetrics.apple.com
C ocsp.apple.com ocsp.entrust.net ocsp.verisign.com EVIntl-ocsp.verisign.com

EVSecure-ocsp.verisign.com SVRSecure-G3-aia.verisign.com
L identity.apple.com configuration.apple.com init.ess.apple.com init-p[x]md.apple.com albert.apple.com
M p[x]-contacts.icloud.com p[x]-caldav.icloud.com p[x]-imap.mail.me.com

[x].guzzoni-apple.com.akadns.net ax.init.itunes.apple.com a[x].phobos.apple.com
keyvalueservice.icloud.com [x]-courier.push.apple.com itunes.apple.com

Ubuntu
U changelogs.ubuntu.com
T ntp.ubuntu.com geoip.ubuntu.com
P daisy.ubuntu.com
L https. tcp.fs.one.ubuntu.com fs-[x].one.ubuntu.com one.ubuntu.com

CentOS
U mirrorlist.centos.org
T [x].centos.pool.ntp.org

openSUSE
U download.opensuse.org opensuse-community.org

Symbols: [U]: polling for updates; [T]: time synchronization; [P]: problem reporting; [N]: discovery of net-
work connectivity; [C]: certificate validation; [L]: activities right after log-on; [M]: miscellaneous background
activity; [x]: placeholder for varying numbers/strings; [domain]: placeholder for configured search domain.


