Fingerprinting Techniques for Network Forensics

Overview, Opportunities and Challenges

Dominik Herrmann
Fingerprinting Primer

Origin: Radar “fingerprints”
Fingerprinting Primer

Origin: Radar "fingerprints"
Fingerprinting Primer

Fingerprinting = Art + Engineering

Art:
- selection of features >

Engineering:
- robust construction of pattern matching

Diversity

Stability

statistics

machine learning

pattern matching

Talbot et al. (2001)
Fingerprinting Primer

Image: Srihari et al. (2001)

Machine learning matching

Pattern recognition

Diversity Stability
Agenda

Fingerprinting Primer

From Computer Forensics to **Network Forensics**

Three Case Studies:

- Website Fingerprinting
- Device/Software Fingerprinting
- Human Behavior Fingerprinting

Fingerprinting for Forensics:
A new **promising** opportunity or a **dangerous** instrument?
The case for network forensics

<table>
<thead>
<tr>
<th>Computer Forensics</th>
<th>Network Forensics</th>
</tr>
</thead>
<tbody>
<tr>
<td>focus on HDD and RAM</td>
<td>focus on network traffic</td>
</tr>
<tr>
<td>static dataset</td>
<td>transient dataset</td>
</tr>
</tbody>
</table>

Typical objectives

- deduce actions of a subject
- ascription of files/actions

However, some attacks do not leave suitable forensic traces.

We could look at network traffic to capture transient data and activities.

Typical objectives

- find source of criminal activity
- find evidence that a subject is involved in criminal activity

Challenges

- large volumes of traffic difficult to analyze
- cannot analyze content if it is encrypted before transmission
Rising interest in security-related fingerprinting lately

Can we leverage fingerprinting techniques for network forensics?

Yes!

1. Determine activities of a subject, even if traffic is encrypted
2. Find evidence for involvement in criminal activities
Objective 1:
Determining activities in encrypted traffic

Case Study 1: Website Fingerprinting
Website Fingerprinting

• The Crime Scene
 - subject visits incriminating website
 - investigator has access to traffic
 - traffic is encrypted on network layer

• Digital Forensics Objective
 - find corroborating evidence for specific incriminating activity

• Fingerprinting Approach
 - relies on metadata that is not encrypted ("traffic analysis")
 - investigator collects traffic samples for interesting websites and extracts fingerprints (manually or via machine learning)
 - successful identification of site if recorded traffic of subject matches one of the known fingerprints
Technique 1: Characteristic Patterns in IP Packets

Investigator can only observe size, direction and timing of packets

Also applicable for anonymization services
Technique 1: Characteristic Patterns in IP Packets

..., Herrmann, Wendolsky, Federrath (2009), ...

Many websites cause characteristic patterns
Technique 1: Characteristic Patterns in IP Packets

- **Approach:** Fingerprint extraction & matching with machine learning
 - features: histogram of packet sizes observed during download
 - supervised learning technique: kNN and Naïve Bayes classifiers

- **Evaluation**
 - OpenSSL, stunnel, OpenVPN, IPsec, JonDonym, Tor
 - 775 popular sites from Alexa

- **Results**
 - accuracy > 95% for all systems (exception: Tor & JonDonym)
 - high efficiency: fingerprints keep for multiple days and a single training instance is sufficient

Next up:
Technique 2: Website fingerprinting via characteristic DNS queries
Technique 1: Characteristic Patterns in IP Packets

- **Approach**: Fingerprint extraction & matching with machine learning
 - features: histogram of packet sizes observed during download
 - supervised learning technique: \textit{kNN} and Naïve Bayes classifiers

- **Evaluation**
 - OpenSSL, stunnel, OpenVPN, IPsec, JonDonym, Tor
 - 775 popular sites from Alexa

- **Results**
 - accuracy > 95% for all systems (exception: Tor & JonDonym)
 - high efficiency: fingerprints keep for multiple days and a single training instance is sufficient

Next up:
Technique 2: Website fingerprinting via characteristic DNS queries
pesticide steel pipe
Technique 2: Website Fingerprinting via DNS Queries

Krishnan & Monrose (2010)

Observable DNS queries due to prefetching (Firefox, Chrome, Safari):

www.schottlandforum.de
hallespektrum.de
www.explorate.de
forum.mosfetkiller.de
groups.google.com
www.feld-eitorf.de
www.kr-rohrsysteeme.de
www.stahlrohr.at
unkrautvernichter.preisvergleich.de
unkrautex.living3000.de
Objective 2:
Find evidence for involvement in criminal activities

Case Study 2: Device/Software Fingerprinting
Device and software fingerprinting
Device and software fingerprinting

textual description of scenario, forensic objective and approach on next slide
Device and software fingerprinting

- **The Crime Scene**
 - subject carries out criminal activity on the network
 - investigator has access to the traffic of the subject
 - an investigation is launched and all hardware is seized
 - the subject denies any involvement and incriminates a flat mate
 - no traces of the activity can be found on any of the machines

- **Digital Forensics Objective**
 - **ascription/association**: find corroborating evidence that one of the machines was in fact used for the criminal activity

- **Fingerprinting Approach**
 - relies on **differing implicit behavior** of devices/software
 - build a **corpus**: investigator collects behavioral samples of network traffic for various systems
 - infer **system architecture, operating system, browser**, etc. by matching recorded traffic of suspect to patterns from corpus
Prefer to rely on implicit traits. Explicit identifiers, e.g., the User Agent header, can be forged easily.
Various Device Fingerprinting Techniques

- **Operating system fingerprinting**
 - characteristics in **TCP stack**, Comer&Lin (1994)
 - now readily available in tools, e.g. *p0f* & *nmap*

- **Device fingerprinting**
 - **Skew of real-time clock** is characteristic, Kohno et al. (2005)
 - Runtime of **JavaScript** code is characteristic for browser, operating system and CPU architecture, Mowery et al. (2011)
 - Text rendering in **HTML5** `<canvas>`, Mowery&Shacham (2012)

- **Browser fingerprinting**
 - Characteristic **TCP flows** allow identification, Yen et al. (2009)
 - **EFF Panopticlick**: plugins, fonts, etc., Eckersley (2011)

Note: **class** characteristics vs. **individual** characteristics
Various Device Fingerprinting Techniques

- **Operating system fingerprinting**
 - characteristics in TCP stack, Comer & Lin (1994)
 - now readily available in tools, e.g. p0f & nmap

- **Device fingerprinting**
 - Skew of real-time clock is characteristic, Kohno et al. (2005)
 - Runtime of JavaScript code is characteristic for browser, operating system and CPU architecture, Mowery et al. (2011)
 - Text rendering in HTML5 <canvas>, Mowery & Shacham (2012)

- **Browser fingerprinting**
 - Characteristic TCP flows allow identification, Yen et al. (2009)
 - EFF Panopticlick: plugins, fonts, etc., Eckersley (2011)

Figure 4. TSopt clock offset-sets for 69 Micron 448MHz Pentium II machines running Windows XP Professional SP1. Trace recorded on host2, three hops away, 2004-09-10 08:30PDT to 2004-09-14 08:30PDT.

Note: class characteristics vs. individual characteristics
Various Device Fingerprinting Techniques

- Operating system fingerprinting
 - characteristics in **TCP stack**, Comer&Lin (1994)
 - now readily available in tools, e.g. **p0f & nmap**

- Device fingerprinting
 - Skew of real-time clock is characteristic, Kohno et al. (2005)
 - Runtime of JavaScript code is characteristic for browser, operating system and CPU architecture, Mowery et al. (2011)
 - Text rendering in HTML5 <canvas>, Mowery&Shacham (2012)

- Browser fingerprinting
 - Characteristic **TCP flows** allow identification, Yen et al. (2009)
 - EFF **Panopticlick**: plugins, fonts, etc., Eckersley (2011)

Note: **class** characteristics vs. **individual** characteristics
Your browser fingerprint appears to be unique among the 3,628,476 tested so far. Currently, we estimate that your browser has a fingerprint that conveys at least 21.79 bits of identifying information.

<table>
<thead>
<tr>
<th>Browser Characteristic</th>
<th>bits of identifying information</th>
<th>one in x browsers have this value</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Agent</td>
<td>13.07</td>
<td>8618.71</td>
<td>Mozilla/5.0 (Macintosh; Intel Mac OS X 10.8; rv:25.0) Gecko/20100101 Firefox/25.0</td>
</tr>
<tr>
<td>HTTP_ACCEPT Headers</td>
<td>16.79</td>
<td>113389.88</td>
<td>text/html, / gzip, deflate en-us,en;q=0.8,de;q=0.5,de-de;q=0.3</td>
</tr>
<tr>
<td>Browser Plugin Details</td>
<td>21.79+</td>
<td>3628476</td>
<td>Plugin 0: Google Talk Plugin Video Renderer; Version 4.9.1.16010; o1dbrowserplugin, plugin; (Google Talk Plugin Video Renderer; application/o1d; o1d). Plugin 1: Java Applet Plug-in;... Shockwave Flash 11.9 r900; Flash Player.plugin; (Shockwave Flash; application/x-shockwave-flash; swf) (FutureSplash Player; application/futuresplash; spl). Plugin 4: iPhotoPhotocast; iPhoto6; iPhotoPhotocast.plugin; (iPhoto 700; application/photo;).</td>
</tr>
<tr>
<td>Time Zone</td>
<td>2.64</td>
<td>6.23</td>
<td>-60</td>
</tr>
<tr>
<td>Screen Size and Color Depth</td>
<td>11.95</td>
<td>3965.55</td>
<td>1120x700x24</td>
</tr>
<tr>
<td>System Fonts</td>
<td>21.79+</td>
<td>3628476</td>
<td>Adobe Caslon Pro Bold, Adobe Caslon Pro Bold Italic, Adobe Caslon Pro Italic, [300 more fonts], Yuppy TC Regular, Zapf Dingbats, Zapfino (via Flash)</td>
</tr>
<tr>
<td>Are Cookies Enabled?</td>
<td>0.43</td>
<td>1.35</td>
<td>Yes</td>
</tr>
<tr>
<td>Limited supercookie test</td>
<td>0.95</td>
<td>1.93</td>
<td>DOM localStorage: Yes, DOM sessionStorage: Yes, IE userData: No</td>
</tr>
</tbody>
</table>
OS Fingerprinting based on DNS Queries

Windows 7

- au.download.windowsupdate.com
- watson.microsoft.com
- ipv6.msftncsi.com
- gadgets.live.com
- weather.service.msn.com
- money.service.msn.com

Windows 8

- au.v4.download.windowsupdate.com
- ds.download.windowsupdate.com
- bg.v4.emdl.ws.microsoft.com
- definitionupdates.microsoft.com
- spynet2.microsoft.com
- watson.telemetry.microsoft.com
- sqm.telemetry.microsoft.com
- clientconfig.passport.net
- ssw.live.com
- client.wns.windows.com
- appexbingfinance.trafficmanager.net
- appexbingweather.trafficmanager.net
- appexsports.trafficmanager.net
- appexdb[x].stb.s-msn.com
- de-de.appex-rf.msn.com
- finance.services.appex.bing.com
- financeweur[x].blob.appex.bing.com
- weather.tile.appex.bing.com

Ubuntu 12.04

- changelogs.ubuntu.com
- ntp.ubuntu.com
- geoip.ubuntu.com
- daisy.ubuntu.com
- _https._tcp.fs.one.ubuntu.com
- fs-[x].one.ubuntu.com

MacOS X 10.8.5

- swscan.apple.com
- swdist.apple.com
- swcdnlocator.apple.com
- su.itunes.apple.com
- time.euro.apple.com
- radarsubmissions.apple.com
- internalcheck.apple.com
- identity.apple.com
- configuration.apple.com
- init.ess.apple.com
- init-p[x]md.apple.com
- p[x]-contacts.icloud.com
- p[x]-caldav.icloud.com
- p[x]-imap.mail.me.com
- [x].guzzoni-apple.com
- akadns.net
- ax.init.itunes.apple.com
- a[x].phobos.apple.com
- keyvalueservice.icloud.com

CentOS 6

- mirrorlist.centos.org
- [x].centos.pool.ntp.org

Similar for iOS, Windows Phone and Android OS
OS Fingerprinting based on DNS Queries

Windows 7

- au.download.windowsupdate.com
- watson.microsoft.com
- gadgets.live.com
- money.service.msn.com

Windows 8

- au.v4.download.windowsupdate.com
- definitionupdates.microsoft.com
- spynet2.microsoft.com
- wawson.telemetry.microsoft.com
- clientconfig.passport.net
- ssw.live.com
- client.wns.windows.com
- appexbingweather.trafficmanager.net

Mac OS X 10.8.5

- swdist.apple.com
- time.euro.apple.com
- internalcheck.apple.com
- identity.apple.com
- configuration.apple.com
- p[x]-contacts.icloud.com
- p[x]-caldav.icloud.com
- [x].guzzoni-apple.com.akadns.net
- keyvalueservice.icloud.com

Ubuntu 12.04

- changelogs.ubuntu.com
- ntp.ubuntu.com
- geoip.ubuntu.com
- daisy.ubuntu.com
- _https._tcp.fs.one.ubuntu.com

CentOS 6

- mirrorlist.centos.org
- [x].centos.pool.ntp.org

similar for iOS, Windows Phone and Android OS
Browser Fingerprinting based on DNS Queries

Firefox

safebrowsing.google.com translate.googleapis.com [xxxxxxxxxx].
[domain] apis.google.com cache.pack.google.com clients[x].google.com
[x].pack.google.com safebrowsing-cache.google.com
safebrowsing.clients.google.com ssl.gstatic.com tools.google.com
www.google.com www.google.de www.gstatic.com

Chrome

apis.google.com clients.l.google.com clients1.google.com
safebrowsing-cache.google.com
safebrowsing.clients.google.com ssl.gstatic.com
www.google.com www.google.de www.gstatic.com

Safari

ctldl.windowsupdate.com iecvlist.microsoft.com
t.urs.microsoft.com

Internet Explorer
DNS leaks information about setup & environment

1278194041.274 134.100.15.31 www.cnn.com A +
1278194041.278 132.100.15.31 ad-emea.doubleclick.net A +
1278219213.110 132.100.15.31 download.windowsupdate.com A +
1278221941.040 132.100.15.2 fbidc2008a.informatik.uni-hamburg.de SRV +

Environmental fingerprinting?

Installed Applications

1279552941.192 87.2.55.11 FRITZ!NAS.fritz.box A +
1279553021.142 87.2.55.11 personal.avira-update.com A +
1279823365.030 87.2.55.11 ui.skype.com A +
1279553010.891 87.2.55.11 PAULSPC-16K2966SDJJ.fritz.box A +

Neighboring machines

Own hostname

Local domain suffix
Where can DNS data be observed or confiscated?

- Client PC
- DNS Server
- Web Server
- DNS Server of ISP
 - Google DNS, OpenDNS, Symantec Secure DNS, ...

![Internet Protocol Version 4 (TCP/IPv4) Properties window](image)
Objective 2:
Find evidence for involvement in criminal activities

Case Study 3: Human Behavior Fingerprinting
The problem of linking activities of a user over time

IP Address 1
- Criminal activity
- No identity

IP Address 2
- Known identity
- No criminal activity

Association possible?

Textual description of scenario, forensic objective and approach on next slide.
Behavioral fingerprints of users

- **The Crime Scene**
 - Day 1: subject carries out criminal activity on the network
 - Day 2: subject identifies himself during online shopping
 - investigator has access to network traffic on Day 1 and Day 2

- **Digital Forensics Objective**
 - *ascription/association*: find corroborating evidence that the subject identified on Day 2 is the same as the subject that was involved in criminal activity on Day 1

- **Fingerprinting Approach**
 - relies on characteristic behavior of humans
 - train a classifier: investigator collects traffic samples of multiple users on Day 1 and uses machine learning to extract fingerprints
 - classifier is used to determine whether the session of the suspect on Day 2 matches the behavioral fingerprint from Day 1
Behavior-based linking of sessions of a subject

..., Herrmann, Banse, and Federrath (2013), ...

- Fingerprinting approach
 - profile: hostnames in DNS queries, number of queries per name
 - all queries of a user within a session grouped by source IP

(approach not limited to DNS traffic)
Is behavior-based fingerprinting feasible?
Behavior-based linking of sessions of a subject

- **Evaluation approach**
 - obtained a DNS log of University of Regensburg
 - 2 months, 3860 users, 431 mn. queries, 5 mn. hostnames
 - implement linking technique with 1NN and Naïve-Bayes classifier

Apache Hadoop Cluster 18 quadcore desktop machines
Result: on average 86 % of day-to-day sessions linked correctly
Result: most users re-identified correctly most of the time

Cumulated fraction of ranked users

Fraction of correct links for user

MNB
MNB-P

0.136
Fingerprinting for Forensics:
A new **promising** opportunity or a **dangerous** instrument?
Opportunities for Fingerprinting in Network Forensics

• **Use cases**
 – infer actions even when communication is encrypted
 – ascription of criminal actions, association/involvement of devices

• **Utility for blanket surveillance** and dragnet investigations
 – trace back potentially incriminating activities to the source to determine what should be investigated in detail ("leads")

• **Utility as corroborating evidence in court**
 – implicit characteristics are unavoidable, difficult to forge (?)

• **Utility of fingerprints for defense:** to **disprove false accusations**?
 – should users pre-emptively keep a log of their own activities to provide counterevidence?
Challenges and Risks

• **Unclear probative value**
 – poor explainability of the decision of a machine learning system
 – required accuracy? robust evaluation (via standard corpora)?

• **Future work:** active fingerprinting via labeling/watermarking?

• **Will feasible techniques lead to calls for pre-emptive surveillance?**

• **Identity theft vs. fingerprint theft**
 – fingerprints can be stolen and re-injected
 – easier than with fingerprints of physical devices (?)
Summary

Fingerprinting: diversity and stability of characteristics

Determine activities of a subject, **even if traffic is encrypted**

Infer associations: evidence for involvement in criminal activities

Three Case Studies:

- Website Fingerprinting
- Device/Software Fingerprinting
- Human Behavior Fingerprinting

Fingerprinting for Forensics:
A new **promising** opportunity or a **dangerous** instrument?
Backup
Result: session linkage relies on most popular hostnames only
Result: linking activities works also with shorter sessions.
References

