


# Informationssicherheit und technischer Datenschutz durch verteilte Systeme

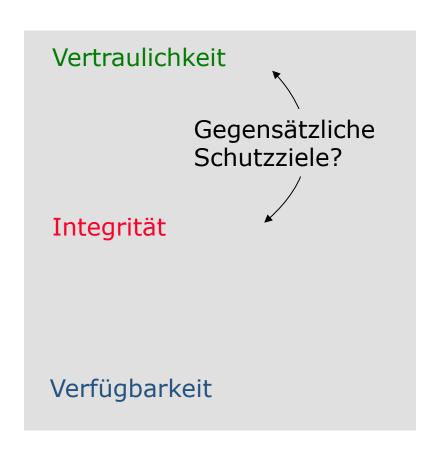
Prof. Dr. Hannes Federrath Sicherheit in verteilten Systemen (SVS) http://svs.informatik.uni-hamburg.de



• Klassische IT-Sicherheit berücksichtigt im Wesentlichen Risiken, die durch regelwidriges Verhalten in IT-Systemen entstehen.



unbefugter Informationsgewinn


unbefugte Modifikation

unbefugte Beeinträchtigung der Funktionalität

# Mehrseitige Sicherheit

Müller et. al. 1997

 Mehrseitige Sicherheit bedeutet die Einbeziehung der Schutzinteressen aller Beteiligten sowie das Austragen daraus resultierender Schutzkonflikte.



## Voraussetzung

regelwidriges Verhalten hält
Systeme und Nutzer
schadlos

#### Ziel

gegensätzliche
 Sicherheitsinteressen
 werden erkannt, Lösungen
 ausgehandelt und
 durchgesetzt



# Verfügbarkeit: Redundanz und Diversität

#### Redundanz

Mehrfache Auslegung von Systemkomponenten

Bei Ausfall übernimmt Ersatzkomponente





#### Diversität

Verschiedenartigkeit der Herkünfte

Tolerieren von systemat. Fehlern und verdeckten trojanischen Pferden

Unabhängige Entwicklung von redundanten (Software)-Komponenten

# Verfügbarkeit



# Vertraulichkeit: Schutzziele und Angreifermodell



- Outsider
  - Abhören auf Kommunikationsleitungen
  - Verkehrsanalysen
- Insider
  - Netzbetreiber oder bösartige Mitarbeiter (Verkehrsprofile)
  - Staatliche Organisationen (insb. fremde)



# Vertraulichkeit: Verfahren und Algorithmen

Verfahren

Algorithmen

#### Inhaltsdaten

Vertraulichkeit Verschlüsselung

Inhalte

DES, 3-DES, OTP, IDEA, AES, RSA, ElGamal, ...

Verdecktheit

Steganographie

Inhalte + Existenz

F5, ...

#### Verkehrsdaten

Anonymität Unbeobachtbarkeit

Sender

Ort

Empfänger

Web-Anonymisierer, Remailer, anonyme Zahlungssysteme

Pseudonyme, Proxies, umkodierende Mixe, DC Netz, Private Information Retrieval, ...

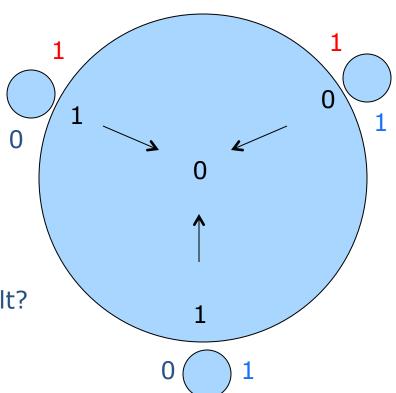


#### Datenschutzfreundliche Techniken

- DC-Netz: kombiniert u.a. Broadcast, Kryptographie und Dummy Traffic
  - Schutz des Senders
- Blind-Message-Service: Unbeobachtbare Abfrage aus von unabhängigen Betreibern replizierten Datenbanken
  - Schutz des Clients
- MIX-Netz: kombiniert u.a. hintereinander geschaltete Proxies von unabhängigen Betreibern, Kryptographie und Dummy Traffic
  - Schutz der Kommunikationsbeziehung
  - Effizient in Vermittlungsnetzen
- Steganographie
  - Verbergen einer Nachricht in einer anderen



#### DC-Netz


Chaum, 1988

#### Jeder für sich:

- Jeder wirft mit jeden eine Münze
- Berechnet das xor der beiden Bits
- 3. Wenn bezahlt, dann xor mit 1 (Komplement des Ergebnisses aus Schritt 2)
- 4. Ergebnis veröffentlichen

#### Alle zusammen:

- Berechnen das xor der drei (lokalen) Ergebnisse
- 2. Wenn globales Ergebnis 0, hat jmd. anderes bezahlt

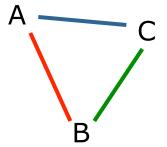




# DC-Netz Chaum, 1988

| Α             | В | C |
|---------------|---|---|
|               |   |   |
| Broadcastnetz |   |   |

| Echte Nachricht von A | 00110101        |
|-----------------------|-----------------|
| Schlüssel mit B       | 00101011        |
| Schlüssel mit C       | <u>00110110</u> |
| Summe                 | 00101000        |


A sendet 00101000

Schlüsselgraph

| ra | ph |  |
|----|----|--|
|    |    |  |

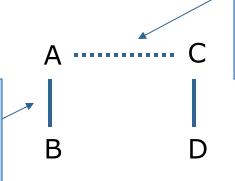
| Leere Nachricht von B | 0000000         |
|-----------------------|-----------------|
| Schlüssel mit A       | 00101011        |
| Schlüssel mit C       | <u>01101111</u> |
| Summe                 | 01000100        |

B sendet 01000100



| Leere Nachricht von C | 0000000         |
|-----------------------|-----------------|
| Schlüssel mit A       | 00110110        |
| Schlüssel mit B       | <u>01101111</u> |
| Summe                 | 01011001        |

C sendet 01011001

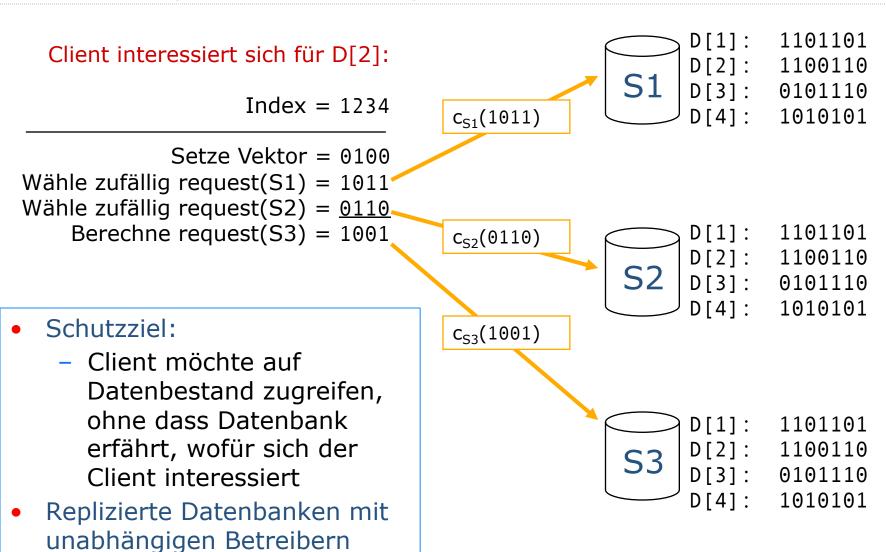

Summe = Echte Nachricht von A 00110101



DC-Netz Chaum, 1988

- Perfekte Unbeobachtbarkeit des Sendens
- Erfordert Synchronisierung der Teilnehmer: Runden
- Zu jedem Zeitpunkt kann immer nur ein Teilnehmer senden
  - Kollisionserkennung und -auflösung nötig
- Sicherheitseigenschaft
  - Jede Nachricht ist innerhalb der Teilnehmer unbeobachtbar, die durch einen zusammenhängenden Schlüsselgraph gebildet werden.
  - Beispiel: Schlüsselgraph

B kann nicht anonym vor A sein, weil B nicht durch einen weiteren, A unbekannten Schlüssel im Graph verbunden ist.




Wenn Schlüssel A–C kompromittiert ist, kann der Angreifer feststellen, ob Nachricht aus Gruppe {A,B} oder {C,D} stammt.



# Blind-Message-Service: Anfrage

#### Cooper, Birman, 1995





#### Blind-Message-Service: Antwort Cooper, Birman, 1995 D[1]: 1101101 Client interessiert sich für D[2]: D[2]: D[3]: 0101110 Index = 1234D[4]: 1010101 0010110 Summe Setze Vektor = 0100Wähle zufällig request(S1) = 1011Wähle zufällig request(S2) = 0110Berechne request(S3) = 1001D[1]: D[2]: 1100110 **S2** D[3]: 0101110 D[4]: 1001000 Summe Antworten von S1: 00101104 S2: 10010004 S3: <u>0111000</u> D[1]: Summe entspricht D[2]: 1100110 1101101 D[2]: **S**3 D[3]: D[4]: 1010101 Summe 0111000 Verbindungsverschlüsselung zwischen Servern und

Client unbedingt notwendig

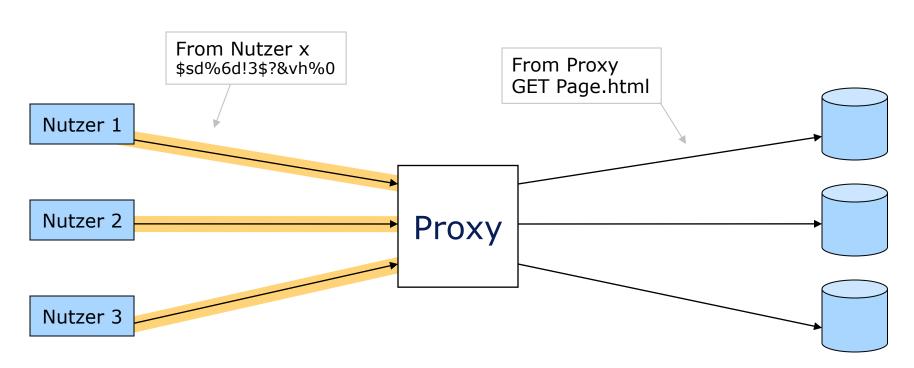


Mix-Netz Chaum, 1981

 System zum Schutz von Kommunikationsbeziehungen bei vermittelter Kommunikation

#### Grundfunktionen:

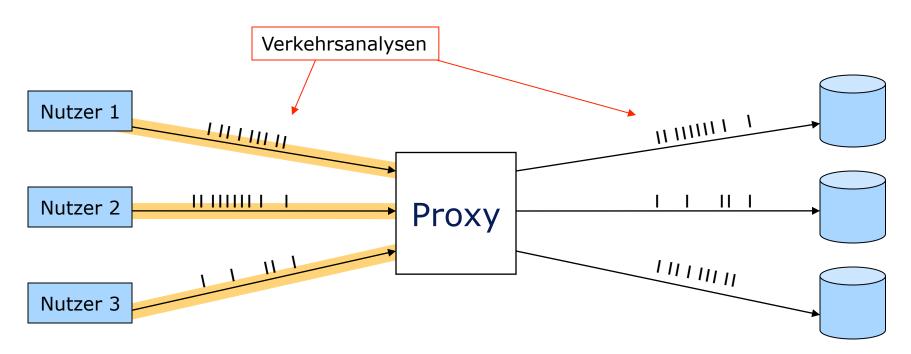
- Nachrichten in einem »Schub« sammeln,
- Wiederholungen ignorieren,
- Nachrichten umkodieren,
- umsortieren,
- gemeinsam ausgeben
- Alle Nachrichten haben die gleiche Länge.
- Mehr als einen Mix und unterschiedliche Betreiber verwenden
- Wenigstens ein Mix darf nicht angreifen.


#### Schutzziel:

Unverkettbarkeit von Sender und Empfänger



#### Proxies: Outsider

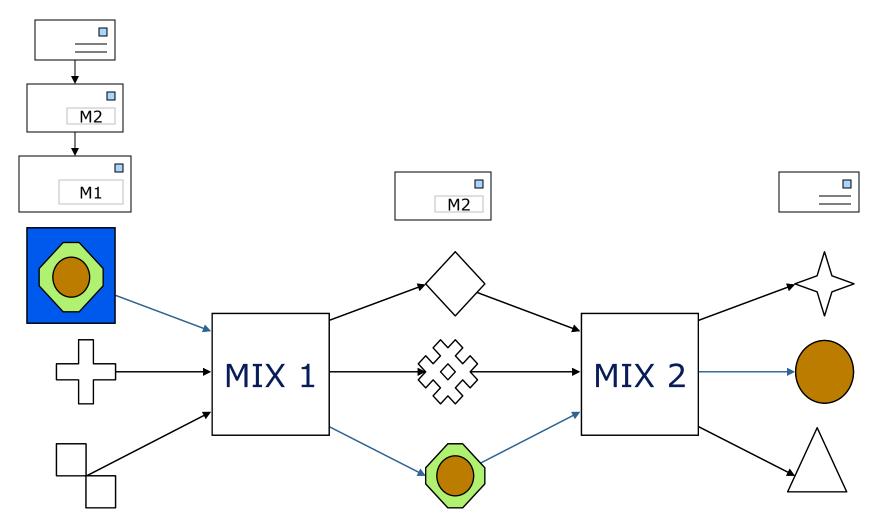

- Erreichbare Sicherheit (Outsider)
  - Beobachter nach Proxy und Serverbereiber:
    - erfahren nichts über den wirklichen Absender eines Requests
  - Beobachter vor Proxy:
    - Schutz des Senders, wenn Verbindung zu Proxy verschlüsselt





### Proxies: Outsider

- Erreichbare Sicherheit (Outsider)
  - Aber: Trotz Verschlüsselung:
    - kein Schutz gegen Verkehrsanalysen
      - Verkettung über Nachrichtenlängen
      - zeitliche Verkettung

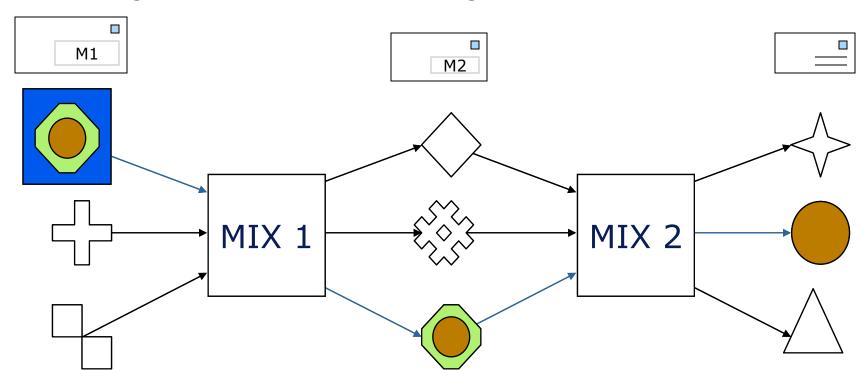


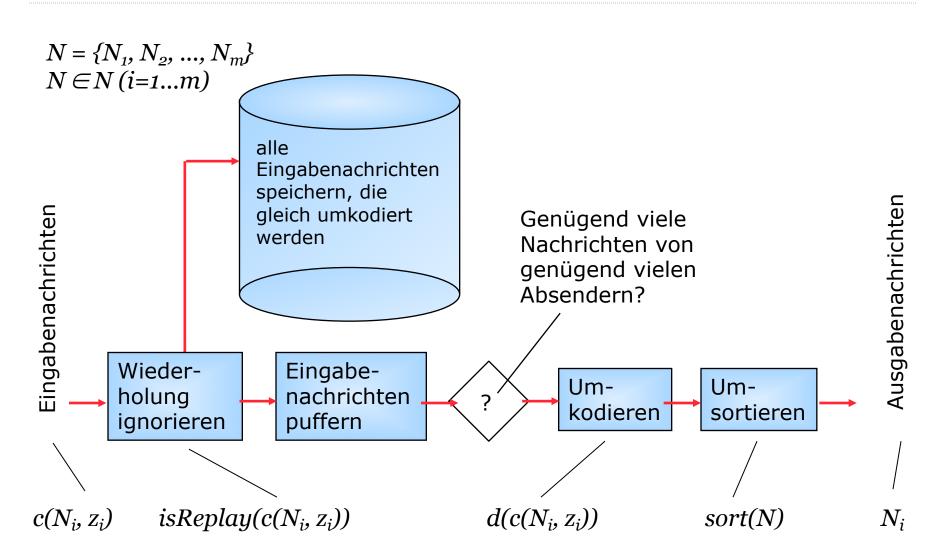



# Mix-Netz

Chaum, 1981

 System zum Schutz von Kommunikationsbeziehungen bei vermittelter Kommunikation



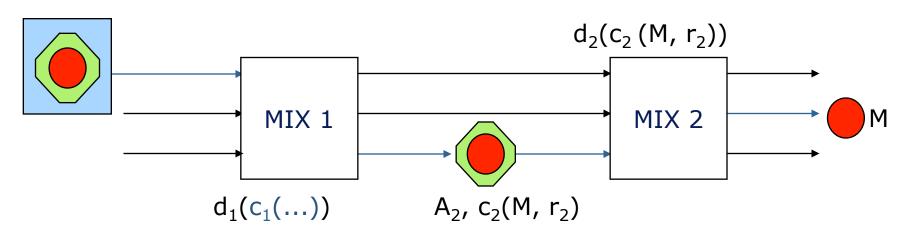




#### Mix-Netz

Chaum, 1981

- Stärke der Mixe:
  - Auch die Betreiber der Mixe erfahren nichts mehr über die Kommunikationsbeziehung zwischen Sender und Empfänger.
- Notwendige Bedingungen:
  - Mehr als einen Mix und unterschiedliche Betreiber verwenden
  - Wenigstens ein Mix darf nicht angreifen.






# Kryptographische Operationen eines Mix

Chaum, 1981

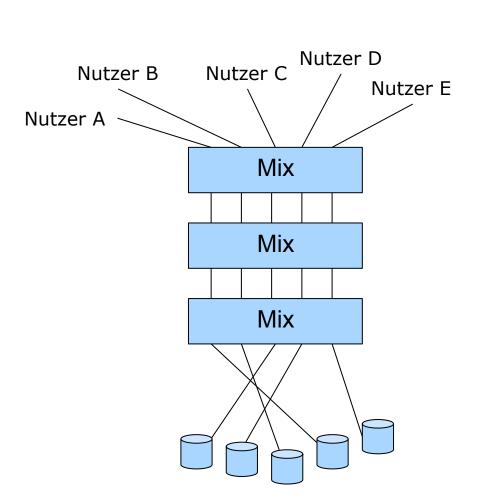
- Verwendet asymmetrisches Verschlüsselungssystem
  - $c_i(...)$  Verschlüsselungsfunktion für Mix i
    - Jeder kann den öffentlichen Schlüssel c<sub>i</sub> verwenden
  - d<sub>i</sub>(...) private Entschlüsselung von Mix i
    - Nur Mix i kann entschlüsseln
  - A<sub>i</sub> Adresse von Mix i
  - r<sub>i</sub> Zufallszahl (verbleibt im Mix, wird »weggeworfen«)
  - M (verschlüsselte) Nachricht für Empfänger (inkl. seiner Adresse)

$$A_1$$
,  $c_1(A_2, c_2(M, r_2), r_1)$ 





# AN.ON – Anonymität Online


# http://www.anon-online.de

Fördern der Nutzung von Nutzer D Techniken zum Schutz der Nutzer C Nutzer B Nutzer E Vertraulichkeit und Anonymität für demokratische Prozesse Nutzer A Mix z.B. Elektronische Wahlen Mix Mix Wahlurne

# AN.ON – Anonymität Online

## http://www.anon-online.de

- Implementierung eines Dienstes zum anonymen Internetzugriff
- Schaffen einer praktikablen Lösung für anonyme und unbeobachtbare Basiskommunikation
  - beruht auf Erweiterungen des Mix-Verfahrens von Chaum
  - Schutz auch vor dem Betreiber des Dienstes (Schutz vor Insidern)
- Schutz des Einzelnen vor Überwachung und Profilierung seiner Internetaktivitäten auch durch private Organisationen





#### Juristische Sicht

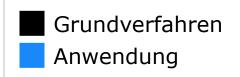
- Telemediengesetz (TMG, vormals Teledienstedatenschutzgesetz TDDSG)
  - § 13 Abs. 6 TMG: Der Diensteanbieter hat dem Nutzer die Inanspruchnahme von Telediensten und ihre Bezahlung anonym oder unter Pseudonym zu ermöglichen, soweit dies technisch möglich und zumutbar ist. Der Nutzer ist über diese Möglichkeit zu informieren.





# Nicht immer nur der Staat hat die Überwachungsmöglichkeiten

- Beispiele
  - Payback, Google, Facebook


- Die Wirtschaft und private Organisationen sammeln heute mehr Daten denn je
  - freiwillige Preisgabe
  - Verbesserung des Service (Customer Relationship Management)
  - illegal (weil kaum nachweisbar und unauffällig) oder in rechtlicher Grauzone (z.B. international handelnde Unternehmen)
- Was kann der Einzelne tun?
  - Zurückhaltung, Skepsis bei Datenweitergabe, technische Schutzmöglichkeiten nutzen (z.B. Verschlüsselung, Anonymisierer)



# Historische Entwicklung

| Jahr | Idee / PET system                 |
|------|-----------------------------------|
| 1978 | Public-key encryption             |
| 1981 | MIX, Pseudonyms                   |
| 1983 | Blind signature schemes           |
| 1985 | Credentials                       |
| 1988 | DC network                        |
| 1990 | Privacy preserving value exchange |
| 1991 | ISDN-Mixes                        |
| 1995 | Blind message service             |
| 1995 | Mixmaster                         |
| 1996 | MIXes in mobile communications    |
|      | Onion Routing                     |
|      | Crowds Anonymizer                 |
| 1998 | Stop-and-Go (SG) Mixes            |
| 1999 | Zeroknowledge Freedom Anonymizer  |
| 2000 | AN.ON/JAP Anonymizer              |
| 2004 | TOR                               |







# Tor (ursprünglich: Onion Routing)



# **Anonymity Online**

Protect your privacy. Defend yourself against network surveillance and traffic analysis.



**Download Tor ®** 

- Tor prevents anyone from learning your location or browsing habits.
- Tor is for web browsers, instant messaging clients, remote logins, and more.
- → Tor is free and open source for Windows, Mac, Linux/Unix, and Android

#### Ziele:

Freier Informationszugang, voll dezentrale Strukturen

Schutz auch vor dem Betreiber des Dienstes (Schutz vor Insidern)

OpenSource

www.torproject.org





# AN.ON (Software: JAP/JonDonym)



#### Ziele:

Schaffen einer praktikablen Lösung für anonyme und unbeobachtbare Basiskommunikation

Schutz auch vor dem Betreiber des Dienstes (Schutz vor Insidern)

OpenSource

www.anon-online.de





Prof. Dr. Hannes Federrath FB Informatik, AB SVS Universität Hamburg Vogt-Kölln-Straße 30 D-22527 Hamburg

E-Mail federrath@informatik.uni-hamburg.de

Telefon +49 40 42883 2358

http://svs.informatik.uni-hamburg.de

