
Introducing the gMix Open Source Framework
for Mix Implementations

Karl-Peter Fuchs, Dominik Herrmann, and Hannes Federrath

University of Hamburg, Computer Science Department, Germany
http://www.springerlink.com/content/0217745237462123/

ESORICS 2012

Abstract. In this paper we introduce the open source software frame-
work gMix which aims to simplify the implementation and evaluation of
mix-based systems. gMix is targeted at researchers who want to evaluate
new ideas and developers interested in building practical mix systems.
The framework consists of a generic architecture structured in logical
layers with a clear separation of concerns. Implementations of mix vari-
ants and supportive components are organized as plug-ins that can easily
be exchanged and extended. We provide reference implementations for
several well-known mix concepts.

1 Introduction

Mix networks are well-known privacy-enhancing technologies that provide
anonymous communication. The basic principle of mixes was suggested by David
Chaum in 1981 [5]. Since then, a large number of concepts and strategies has
been proposed. Application areas include e-mail [5, 6], voting [5, 28, 31], location-
based services [19] as well as low-latency communication (e. g., for TCP, HTTP
[2, 16], DNS [18] and ISDN [29]). So far, the only practically deployed systems
are Mixmaster [6] and Mixminion [9] (anonymous transport of electronic mails)
and the general-purpose anonymization services Tor [16], JAP (JonDonym) [2]
and I2P.1 The source code of these systems has reached a rather high complexity
due to continuous security and performance optimizations, though: for instance,
Tor consists of more than 63,000 lines of ANSI-C code. Therefore, it becomes
increasingly difficult to understand these systems or to extend them with novel
proposals from the research community. Moreover, there is a large body of sci-
entific work without a publicly available or practically usable implementation,
e. g., [8, 11, 13, 14, 22, 23, 29, 32, 33, 37].

This situation has three undesirable consequences. First of all, there are con-
siderable efforts involved in implementing a newly proposed scheme for evalua-
tion or production purposes, because most of the time researchers will have to
re-invent the wheel, i. e., find solutions for common challenges typically encoun-
tered in mix-based systems. Secondly, without an easily accessible implementa-
tion it is impossible to repeat and reproduce previous experiments. Thirdly, even

1 Downloads at sourceforge.net/projects/mixmaster, mixminion.net, www.

torproject.org, anon.inf.tu-dresden.de and www.i2p2.de.

if implementations are available, it is still difficult to compare the results from
one’s own experiments with previous work, because of different implementations,
runtime environments or missing details regarding the experimental setup. Re-
peatability, reproducibility and rigor in experimental research are critical for
quality research, though.

With the gMix project we want to improve the current situation. We believe
that the availability of a software framework can serve as an enabler here. In
fields like cryptography or machine learning, frameworks such as BouncyCastle
and Weka have greatly simplified access to a wide selection of implementations
and led to widespread adoption.2 To the best of our knowledge, in the domain
of privacy-enhancing technologies such a software framework does not exist so
far. The goals of the gMix project are as follows:

1. to provide a repository with compatible, adaptable mix implementations,
2. to simplify development of novel, practically usable mix-based systems and
3. to simplify evaluation of mix systems in a controlled and realistic setting.

Our Contribution. To address the aforementioned objectives we have de-
signed an open and generic architecture for existing and future mixing schemes
and built a Java framework with a plug-in mechanism. Our solution embraces the
separation of concerns paradigm and allows a developer to build a concrete mix
from the existing implementations of individual software components with no or
only little changes to the code. We have already built reference implementations
for various existing mixing schemes to provide a working foundation. At the time
of this writing there are implementations for over ten output strategies, four re-
coding schemes and several auxiliary components (cf. Sect. 5). Furthermore, gMix
includes a load generator and tools for recording results to simplify experimental
evaluation. All components use configuration files, which may improve repeata-
bility of experiments, if these files are published together with a paper. The gMix
project is hosted at https://www.informatik.uni-hamburg.de/SVS/gmix/.
Source code is released under GPLv3.

This paper is structured as follows: In Sect. 2 we start out with a high-level
overview of the framework. We proceed by discussing its layered architecture
(Sect. 3), the overall communication model within the architecture (Sect. 4), and
by providing an overview of the currently available implementations (Sect. 5).
Notes regarding plug-in compatibility are provided in Sect. 6. In Sect. 7 we
present experimental tools which are used in Sect. 8 for a performance evaluation.
We conclude the paper in Sect. 9.

2 Framework Overview

The fundamental design of the gMix Framework (generic mix framework) is in-
spired by the layer architecture of the TCP/IP Model. The main idea is to extend
the TCP/IP Model with mix-specific layers, while preserving simple, standard

2 Downloads at www.bouncycastle.org and www.cs.waikato.ac.nz/ml/weka

gMix Framework!
 Client! Mix 1!

e.g. http !
or e-mail
servers!

user!
application!

!

e.g. web browser
or e-mail client!

Framework!
with plug-ins!

TCP or UDP!

Services!

Framework!
with plug-ins!

mixing!
network!

TCP or UDP!

Mix n!
Framework!
with plug-ins!

local proxy!
end-to-end!

mixing!
network!

distant proxy!
end-to-end!

mixing!
network!

Information Service!

Fig. 1. Overview of the gMix architecture

access to anonymous channels through interfaces almost equal to those of nor-
mal TCP or UDP sockets. The concrete realization of the anonymous channels
(e. g., the output strategy and recoding scheme) is highly customizable. Layers
are implemented as plug-ins and can thus be easily exchanged or composed to
a specific mix via configuration files. Additional low-level components generally
needed for realizing a distributed system are provided as well.

The framework consists of components for clients, mix nodes and an Informa-
tion Service. The Information Service can be used for discovery, grouping mixes
into cascades and as a public board for information exchange. Clients and mixes
form an overlay network via normal TCP or UDP sockets (cf. Fig. 1). Client
and mix plug-ins can be run on a single host to allow peer-to-peer networks.

Anonymous channels can be established between clients and exit nodes (Mix
n in Fig. 1) and are routed via intermediate mixes through the overlay network
(Mix 1 in Fig. 1). For compatibility with standard software and normal Internet
services, proxy servers can be used as end points of the anonymous channels on
both clients and exit nodes. For end-to-end anonymity, public services (e. g., a
web server) may be run directly on mix nodes and privacy-preserving user appli-
cations, such as a web browser that suppresses identifying pieces of information
[20], can be implemented.

The framework can be configured to provide the socket types shown in Ta-
ble 1. We distinguish between Stream and Datagram Sockets. Stream Sockets
are almost equal to normal TCP sockets. They feature connect and disconnect
methods as well as Input and Output Streams with standard read, write and flush
methods. Datagram Sockets are more flexible. A developer can configure several
options. Choosing duplex = true, connection-based = false, reliable = false and
order-preserving = false would result in a UDP/IP-like socket. Choosing reliable
= true might be a good choice for e-mail mixes. Setting connection-based = true
and reliable = false would be favorable for anonymizing VoIP traffic. Connection-
based means that all messages sent through the socket will be tagged with the
same random identifier (Channel ID). The exit node will use this identifier to
map messages to the respective socket end point.

Table 1. Socket types available in the gMix architecture. The sockets are used to
access the mixing layers from the end-to-end layers, i. e., they hide the anonymization
process from user applications.

StreamSocket DatagramSocket

options duplex
duplex, connection-based,
reliable, order-preserving

implicit properties
connection-based, reliable,

order-preserving
–

Layer 6: Application!
 e.g. HTTP!
!

Application!
e.g. browser!

LocalProxy!
e.g. local SOCKS proxy!

Layer 5: Application Tunnel!
 e.g. SOCKS!
!

AnonSocket!
Datagram or StreamSocket!

Layer 4: Transport!
 reliable or unreliable,!
 end-to-end!
!

OutputStrategy!
e.g. constant rate!

Layer 3: Output Strategy!
 change order, DT*,!
 choose routes*!

RecodingScheme!
e.g. Sphinx!

Layer 2: Recoding!
 change outlook,!
 bitwise unlinkability!
!

CommunicationHandler!
e.g. TCP or UDP!

Layer 1: Network!
 routing*, point-to-point !
 connections, topology!
!

Java TCP/UDP Socket!Layer 0: Network stack !
 and physical !
 connections!

OS network stack!

OutputStrategy!
e.g. batch!

RecodingScheme!
e.g. Sphinx!

Communication!
Handler!

Java TCP/UDP Socket!
OS network stack!

DistantProxy!
e.g. SOCKS proxy!

MixServerSocket!
Datagram or StreamSocket!

OutputStrategy!
e.g. batch!

RecodingScheme!
e.g. Sphinx!

Communication!
Handler!

Java TCP/UDP Socket!
OS network stack!

Client! Mix 1! Mix n!Layer!

netw
ork!

end-to-end!
m

ixing!

end-to-end (between anon nodes)!

end-to-end (including external nodes)!

process-to-process! Internet Service!
e.g. HTTP server!

Fig. 2. Abstraction layers of the gMix framework

3 Communication Model and Layered Architecture

The abstraction layers of the gMix architecture are shown in Fig. 2 for the case
of communication between a client and a server via two mixes.

Layer 0 represents the physical or logical connections between the nodes of
the anonymization network (i. e., hosts running the client and mix components
of the framework, anon nodes). In most cases, communication will be realized
via TCP or UDP sockets opened by the Java Virtual Machine the framework is
executed in. As the higher layers of our architecture do not require direct interac-
tion with Layer 0 sockets, various transport protocols (e. g., streaming protocols
like SCTP), Internet layer protocols (e. g., IPv6 or IPsec) and application layer
protocols (e. g., TLS or DTLS) qualify for implementation.

Instead of using protocol-specific addresses directly, every mix chooses a ran-
dom number (Global Identifier) during its initialization and publishes it via the
Information Service along with its actual address information that may vary
among plug-ins (e. g., IPv4 or IPv6 addresses and port numbers). Translating
between Global Identifiers and actual addresses is a Layer 1 task. Higher-order
layers use the Global Identifiers only.

Layer 1 provides point-to-point connections between anon nodes. Its purpose
is to hide the details of the underlying (Layer 0) communication channels by
providing primitives to exchange messages between anon nodes (hop-to-hop).
Its functionality is closely related to the Internet Layer of the TCP/IP Model,
except that (end-to-end) source and destination addresses must be excluded for
anonymity reasons, of course. As a result, each mix will get to know only the
next hop of a message (addresses of further hops are hidden due to encryption).

Choosing the actual message routes is a Layer 3 task. Layer 1 will just
forward messages to the next hop and is thus the lowest layer of our overlay
network. We distinguish between two well-known [4, 7, 17] types of routing for
mix messages: free routes and fixed routes. With free routes, the client chooses
a series of mixes (e. g., from a list obtained from the Information Service) and
adds their addresses to the respective header fields of the layered encryption for
each mix. With fixed routes, mixes can be organized as cascades: All messages
belonging to a fixed route will travel along the same path. No address information
is stored in the mix messages. Layer 3 plug-ins may choose one of the fixed routes,
but not define their own. The Information Service can be used to establish and
organize cascades.

The general purpose of Layer 2 is to make it cryptographically difficult to
link messages entering and leaving mixes, i. e., to provide bitwise unlinkability
of mix messages and to pad them to equal length. This is typically realized by
recoding (i. e., encrypting or decrypting) messages. As some recoding schemes
are deterministic and are thus prone to replay attacks, while others are not, we
chose to make Layer 2 responsible for detecting replays of messages as well. If
a deterministic scheme is employed, a replay detection as used in JonDonym
[24] can be implemented here. The plug-ins are also responsible for publishing
and retrieving information needed for recoding messages (e. g., public keys or
initialization vectors) via the Information Service.

Layer 3 realizes another core function of a mix, the output strategy or flush-
ing algorithm. Its purpose is to hide the true sender of a message among other
senders, thus building an anonymity set. This is achieved by delaying and re-
ordering messages. In his initial work [5], Chaum suggested to collect (or batch)
messages until a certain threshold is reached, then putting out all messages
together in lexicographic order. Since then, numerous output strategies have
been proposed (e. g., [3, 5, 6, 11, 13, 14, 23, 29, 32, 33, 36, 37]). While these output
strategies are highly different in terms of delay and anonymity characteristics,
from an architectural point of view, they are fairly equal as already shown in
[14]. As some output strategies require clients to send in a specific fashion, not
necessarily dependent on the flow characteristics of the user traffic (e. g., at con-
stant rate), we chose to make Layer 3 responsible for initiating the creation and
dropping of dummy messages: dummy messages contain random data instead
of normal payload. They are put into the stream of normal messages to hamper
traffic analysis. While dummy messages may reduce the available bandwidth,
they can also reduce latency, e. g., if the output strategy requires a certain num-
ber of messages to flush. If all users send messages constantly, the sending of real

messages becomes unobservable [8, 29]. We discuss arising dependencies between
Layer 2 and 3 in Sect. 6.1.

Layer 4 is the interface between the mixing layers (1–3) and the end-to-end
layers 5 and 6. It can be used to establish end-to-end anonymous channels be-
tween anon nodes with the socket primitives of Table 1. For free routes, a Global
Identifier can be specified as destination address. The aforementioned Channel
IDs are used to map different messages of a connection-based anonymous chan-
nel to the respective sockets. Different Layer 5 services running on a single node
are distinguished by service port numbers that work like normal port numbers
in the TCP/IP Model.

In Layer 5, application-level proxies (e. g., SOCKS, HTTP, DNS, FTP,
SMTP, or VoIP proxies) can be implemented to enable end-to-end communi-
cation with hosts not part of the overlay network. Layer 5 client plug-ins will
open a local proxy on the client (i. e., in the area of protection of the client) and
tunnel the application level connections (e. g., SOCKS connections established
by a web browser) through Layers 4 to 0 to an exit node running a distant
proxy (the corresponding Layer 5 mix plug-in). The distant proxy will forward
the data of the tunnelled connections to their respective destinations (e. g., nor-
mal web servers). A plug-in developer can choose whether an anonymous tunnel
shall be established for each application level connection or all connections shall
be multiplexed through a single anonymous tunnel.

With the socket interfaces of Layer 4 being very equal to normal sockets, we
expect easy adaptation of existing proxy software. Since Layer 5 is the first layer
not required to be written completely in Java, proxy services written in different
languages should be integrable by implementing an adapter class in Java.

Layer 6 is the layer closest to the user and equivalent to the application
layer of the TCP/IP Model. It refers to higher-level application protocols and
end-to-end connections between application programs. The concrete realization
of these programs and protocols is out of the scope of our model, though.

4 Inter-layer Communication

To support different implementations (i. e., plug-ins) of the abstraction layers,
standard interfaces between the framework and plug-ins are needed. As a result,
we had to choose a common model for communication between layers and define
a uniform internal message format. We considered two common architectural
designs: (1) using a single loop to iterate over all layers or (2) to use a thread-
based approach with asynchronous I/O between layers. We chose the
latter as this in our view

– simplifies the implementation of multiple threads on one layer to speed up
operation (e. g., for the recoding scheme),

– allows parallel operation on different layers (e. g., decrypting messages on
Layer 2 while new messages are received via Layer 1),

– allows to run several distinct instances on a single layer concurrently (e. g.,
communication handlers for client and mix connections on Layer 1) and

Layer 0!

User Database!

Layer 1!

receiver thread!

Layer 2!

blocking!
input queue!

Message!
globalID[]	 route	
globalID	 nextHop	
byte[]	 message	
byte[][]	 headers	
User	 owner	

User!
attach(object)	
getAttachment()	

static functions!

client sockets!

Layer 3!
messages!delaying!

plug-in!
example!
!

plug-in!
example!
!

plug-in!
example!

recoding threads!
replay!

detection!

sender thread!

blocking !
output queue!

static functions!

static functions!

sockets for other mixes!

Fig. 3. Inter-layer communication patterns and separation of plug-in and framework
concerns. Example of a simplex mix handling client connections.

– leads to more understandable implementations because of loose coupling and
a clear separation of concerns.

For process synchronization, we use blocking queues with a wait-notify mech-
anism (cf. Fig. 3) between Layer 1 and Layer 2 (blocking conditions are empty
and full for getMessage and addMessage operations, respectively). The queues
are part of the framework, not the plug-ins. As a result, plug-in developers will
not have to implement synchronization mechanisms themselves, unless they de-
cide to have different threads (requiring shared resources) within their plug-ins.

For the internal message format, i. e., the Java objects exchanged between
layers, we chose a generic solution, defining only the general purpose of a field
rather than its actual content. As a result, individual contents and headers may
be defined by plug-in developers for each layer. While this allows for tailored
solutions, it also requires that plug-ins are developed pair-wise for clients and
mixes, unless another plug-in speaking the same protocol is already implemented
(we discuss dependencies between plug-ins in Sect. 6.1). In the remainder of this
section we will focus on the details of the internal message format and further
mechanisms included with the framework to keep state across multiple layers
and assure compatibility between (plug-ins of) different layers.

As illustrated in Fig. 3, the Java objects exchanged between layers contain
a byte array with the actual bit representation of the message to be eventually
transmitted via Layer 0. Each layer is allowed to add additional headers. End-
to-end headers (Layer 4 and above) can be added directly to the message field.
Headers that are required at each hop (i. e., in Layer 3) must be stored in the data
structure headers. Layer 2 implementations (recoding schemes) must indicate,
whether they are capable of adding additional header fields for each mix (cf.
Sect. 6.1). Currently, the only implementation requiring additional headers is
the stop-and-go output strategy [23].

End-to-end destination addresses of messages are chosen on Layer 4 and
stored in the data structure route. In free route setups, Layer 3 may add the
addresses of further hops. The route information is stored in the layered encryp-
tion by the recoding scheme (Layer 2). Due to the encryption of the message on
Layer 2, the cleartext field nextHop is needed for routing purposes on Layer 1.
This field can also be re-set at each hop to allow for adaptive or random routing.

For keeping state, the component User Database is available. It stores a
data structure (user) for each connected client. For each message, a reference to
the respective user object is set on Layer 1, which allows for immediate access
without look-up delays on all layers. Plug-ins can attach individual objects to
each user. The Java generics mechanism is used to assure compile-time type
safety.

Layers may offer static functions to adjacent layers. For example recoding
scheme plug-ins may offer an interface to create dummy messages for output
strategy plug-ins. Classes of general use for different plug-ins of the same layer
can be offered as static functions as well, e. g., a class for replay detection.

5 Status of Development and Available Implementations

Started in 2011, the gMix project is still under heavy development. While indi-
vidual implementations are quite basic, others have already reached practicable
quality. The framework can load individual plug-in combinations specified in a
config file. The Information Service can be used to organize mixes in cascades
via network (for real deployment) or on a single workstation (for testing, mea-
surement and teaching) without having to deal with individual IP addresses or
port numbers. A load generator can be used to evaluate components and test
implementations (cf. Sect. 7). A PKI is not included yet, but will be added soon.
Framework and plug-ins currently consist of more than 16,000 SLOC in total.
At present, the mix plug-ins listed in Table 2 are available.

On Layer 3, we have implemented the output strategies described in [5, 6, 14,
23, 33] and [37]. On the client side (not included in Table 2), we offer implemen-
tations to send at constant rate, send requests and receive replies alternately and
to send data immediately on request of Layer 4 (e. g., for datagram services). An-
other implementation mimics the general behavior of TCP/IP sockets by waiting
a configurable amount of time for packets to be filled before forwarding them.

Currently we offer four Layer 2 implementations: Two plug-ins
(RSA AES Channel and RSA AES LossTolerantChannel) are supposed to be
used for low-latency mix systems and streaming data. Both use RSA (in
OAEP mode with configurable key size) to establish anonymous channels.
Data is sent in cells of configurable size, each layer encrypted with AES. The
RSA AES Channel scheme uses OFB and is order-preserving (cf. [38]). The
RSA AES LossTolerantChannel employs AES in CBC mode with explicit ini-
tialization vectors (IV). With this mode and IVs prepended to each encryp-
tion layer, each cell can be decrypted separately, i. e., lost cells can be tol-
erated (the same mechanism is used in DTLS). We use HMAC-SHA256 for

Table 2. Currently available plug-ins and their general capabilities (Duplex, Reliable,
Connection-Based and Order-Preserving, cf. Table 1 and Sect. 6.1). True, false and any
values should be seen as properties of our implementations, not as general properties
of the concepts as some may be implemented differently.

MIX PLUG-INS D R CB OP

Layer 3

BinomialPool [14, 32], BasicBatch [5], BasicPool [6],
ThresholdPool [33], TimedBatch [33], CottrellPool [6],

ThresholdAndTimedBatch [33], ThresholdOrTimedBatch [33],
BatchWithTimeout [33], TimedDynamicPool [6],
CottrellRandomDelay [6], CottrellTimedPool [6]

any true false false

StopAndGo [23] any false false false
SynchronousBatch (simplified version of [29]), DLPA [37] any true true true

NoDelay (will forward data immediately as in [2, 16]) any true any true

Layer 2

Sphinx [10] (SPHINX in Sect. 8) false true false false
RSA OAEP AES OFB (RSA-OFB in Sect. 8) false true false false

RSA AES Channel (SYM-CH in Sect. 8) any true true true
RSA AES LossTolerantChannel (LT-CH in Sect. 8) false true true false

Layer 1

Mix-Client TCP FCFS Sync. I/O, Mix-Client TCP
Round-robin Sync. I/O, Mix-Client TCP FCFS Async. I/O,

Mix-Mix TCP Multiplexed Sync. I/O
any true any true

Mix-Client UDP FCFS Async. I/O, Mix-Mix UDP Async. I/O false false any false

message integrity in both cases. The two remaining plug-ins are Sphinx and
RSA OAEP AES OFB. The very compact Sphinx scheme [10] is optimized for
services with typically short messages (e. g., electronic mail or micro-blogging).3

The RSA OAEP AES OFB plug-in is pretty close to the original suggestion of
David Chaum [5], except that we use a hybrid scheme with RSA in OAEP and
AES in OFB mode.

On Layer 1, we have implemented several mix plug-ins to handle client con-
nections via different protocols (TCP, UDP), with varying scheduling mechanism
(first-come first-served, round-robin) and with diverse I/O models (asynchronous
and synchronous I/O). For connections between mixes, a plug-in capable of
multiplexing messages of different clients through a single TCP connection is
available (Mix-Mix TCP Multiplexed Sync. I/O). Using UDP between mixes is
possible as well (Mix-Mix UDP Async. I/O).

6 Mix Composition and Compatibility

The layer concept of the gMix architecture provides a highly structured and in
our opinion easily comprehensible view of a mix. Nevertheless, it also introduces

3 Our implementation is a Java port of the Python implementation provided at crysp.
uwaterloo.ca/software/ using Curve25519 ECDH.

additional complexity, because the developer is faced with the decision to select
adequate implementations on each layer.

Currently, we require the developer to choose a reasonable plug-in composi-
tion, or use predefined configurations included with the framework. As we expect
the target audience of gMix to consist of researchers and developers familiar
with mix systems, we do not consider this to be an issue for now. Nevertheless,
simplifying the composition of plug-ins and investigating and documenting the
dependencies between different mix concepts is certainly a desirable goal.

In Sect. 6.1 we discuss some important dependencies and their implications
for plug-in development. Afterwards we present a rather basic, but extendable
matching mechanism for capabilities and requirements that we plan to include
in a future version of the framework in Sect. 6.2.

6.1 Dependencies and Implications for Plug-in Development

During plug-in development we found that most dependencies between imple-
mentations are closely related to the socket options of Layer 4 (cf. Table 1). Given
the strict interfaces between the framework layers and taking those dependencies
into account, many plug-ins of different layers are compatible without further
efforts. We will therefore illustrate these dependencies along with the basic ca-
pabilities of our current plug-ins first, before we discuss dummy traffic and
highlight design choices for plug-in development.

The capabilities of the current plug-ins for Layer 4 socket options are dis-
played in Table 2 (Duplex, Connection-Based, Reliable and Order-Preserving).
While true and false indicate whether a plug-in has a certain capability or
not, any means that a plug-in is adaptive, i. e., it can be configured to offer the
respective capability (for example, a Layer 1 plug-in using UDP can introduce
sequence numbers for packets in order to support order-preserving transfer).

The duplex capability specifies whether or not a plug-in distinguishes be-
tween request and reply messages. On Layer 1, duplex simply means that plug-ins
can receive as well as send messages. The Layer 2 plug-in Sphinx does not make
a difference between requests and replies, i. e., this protocol does not exhibit the
duplex property according to our definition. On Layer 3, plug-ins that collect
both requests and replies within a joint message pool (i. e., they are part of a
common anonymity set) are defined to be simplex. To support duplex sockets
on Layer 4, all lower-layer plug-ins must support duplex as well. If that is not
the case, two simplex sockets can be established on Layer 4 to offer end-to-end
duplex connections (and more secure simplex plug-ins like Sphinx can be used).

As stated before, the connection-based attribute is used to describe plug-
ins that allow the linking of packets that belong to the same anonymous channel.
For instance, the Layer 3 plug-in SynchronousBatch will collect a message for
each channel before output and must therefore know which messages belong to
which channel. The same applies for the Layer 2 plug-in RSA AES Channel, as
it is required to use the same cipher instance for each message of a channel.
To support connection-based Layer 2 and Layer 3 plug-ins, Layer 1 plug-ins
are required to tag individual packets of one connection with the same random

identifier. The identifier must of course be changed from mix to mix and be
deactivated for non-connection-based sockets for security reasons.

The attribute order-preserving is only of relevance for connection-based
sockets. For instance, using the RSA AES Channel plug-in will require that
Layer 3 and Layer 1 plug-ins do not change the order of messages belonging to
one channel as ciphers on client and mixes must stay in sync.

Dummy Traffic In addition to the dependencies discussed above and described
in Sect. 4 (concerning the routing mechanisms free and fixed routes), another
dependency arises when combining connection-based sockets with non-end-to-
end dummy traffic, i. e., when mixes are supposed to generate dummy messages
for a certain channel (as for example with the DLPA plug-in [37]). In case of
stateful recoding schemes (the decryption of subsequent messages depends on
the decryption results of previous messages), the recoding component of a mix
will not be able to generate an indistinguishable dummy for successive mixes
due to the state of the client cipher being secret.

End-to-end dummy traffic (Layer 4) does not introduce additional depen-
dencies, as Layer 2 plug-ins will have to add and remove padding for payloads
smaller than designated anyway. An end-to-end dummy message can be consid-
ered a normal mix message with a payload field containing padding only. Dummy
traffic introduced by mixes in case of stateless recoding schemes is straightfor-
ward as well since mixes can use client-side plug-ins to generate messages, too.

Design Choices for Plug-in Development Whether plug-ins are compatible
or not is not always an inherent property of the mix concept implemented, but
often a design choice of the developer. It is an important decision, whether to
strive for adaptivity (plug-ins will be more complex and difficult to understand
and modify) or simplicity (individual plug-ins will be less complex, but the num-
ber of plug-ins will increase and code redundancy across plug-ins may become
an issue). While the final choice will always be made by the implementer of a
plug-in, we suggest to strive for simple plug-ins. So far we chose to implement
adaptive plug-ins in two cases only: When a plug-in is expected to need a cer-
tain requirement for most use cases and making it adaptive basically means that
some part of its functionality can be turned off (e. g., a Layer 1 TCP connection
handler that can be configured to only read but not write data), or when making
a plug-in adaptive can be achieved by adding only a few lines of code.

6.2 Matching Mechanism for Capabilities and Requirements

To simplify the composition of compatible plug-ins to individual mixes and to
document the capabilities, requirements and dependencies of plug-ins, we plan to
include a rather simple but extendable matching mechanism in the future. The
basic idea of our proposal is inspired by the capability mechanism used in Weka,
a framework for machine learning algorithms. In our case, requirements arising
from rather general design choices (e. g., which topology shall be used or which

topology!

freeRoute!

requirements for all layers:!

requirements for layer 1:!

possible choices:!

rule name:!

fixedRoute!

-!

duplex!

false!true!

-!

...!

global rules (examples)!

true!

requirements for layer 2:!

-!

-!

-!

-!

-!

-!

-!

length-
preserving! routing!

routing!

###	 Settings	 for	 outputStrategy.DLPA_v1.java	 (Layer	 3)	
#	 Global	 capabilities	
topology	 =	 fixedRoute	 	 #	 supported	 topologies	 	
duplex	 =	 true,false	 	 	 	 #	 supported	 communication	 modes	 	
...	
#	 Compatible	 client	 plug-‐ins	
compatiblePlugIns	 =	 SendImmediately_v0_001,WaitFor...	 	
#	 Static	 Function	 requirements	
sameLayerRequirements	 =	 	 #	 needed	 classes	 (if	 any)	
layer1requirements	 =	 	
layer2requirements	 =	 dummyTraffic=true	
layer4requirements	 =	 connectionBased=true	
...	
#	 Parameters	
maxDelay	 =	 1500	 #in	 ms	
...	

Fig. 4. Modeling dependencies as global rules, requirements and capabilities.

socket type shall be available on Layer 4) could be stored as a set of global rules,
i. e., requirements could be specified for each layer (cf. left side of Fig. 4: choosing
the free route topology would for example require a length-preserving recoding
scheme on Layer 2 that is able to include routing information within the message
headers). If developers specify the global capabilities (cf. right side of Fig. 4) of
their plug-ins, i. e., which of the requirements defined in the global rules they
fulfill, an automated matching is possible. As a result, invalid compositions can
be detected, or suitable plug-ins suggested. Adding further security or quality of
service attributes to plug-in descriptions might be an option as well.

As described before, plug-ins must be implemented pair-wise for clients and
mixes, as compatibility cannot be assumed. Nevertheless, some plug-ins may be
compatible. For those, we suggest a white list (parameter compatiblePlugIns in
Fig. 4): If a compatible plug-in is specified, the requirement to implement mix
or client counterparts can be relaxed. Requirements for classes of general use for
different plug-ins (the static functions described in Sect. 4) should be specified
by plug-in developers as well (parameters sameLayerRequirements and layerXre-
quirements for static functions required on the same or on another layer).

We believe that the matching mechanism outlined above can serve as a useful
tool for modeling and verifying dependencies and will help developers to get a
better understanding of design options for individual plug-ins.

7 Experimentation Tools

Evaluating mix systems in terms of performance is a challenging task. Common
methods include manual mathematical analysis (e. g., based on queueing theory),
discrete-event network simulation (a simulation program is used to model the
behavior of network nodes and communication lines on a single workstation),
network emulation (a real local area network is used; traffic is routed through
an emulation workstation that alters packet flow according to the characteristics
of the network situation of interest) and evaluation in real world settings (like
the Internet) or within global research networks (e. g., PlanetLab).

While each evaluation method has advantages and drawbacks, in our view
network emulation fits best with our goal of evaluating existing and new mix
techniques in a controlled and realistic setting (cf. Sect. 1). It allows to use

physical network nodes running a full mix implementation instead of relying on
simplified models of mix node behavior. An experimenter can specify various
network attributes (e. g., bandwidth, round-trip-time, jitter, packet loss, packet
duplication or packet reordering) and evaluate their influence on the overall
performance without the need to distribute network nodes across the Internet.

The need for empirical evaluation tools is increasingly recognized in the pri-
vacy community. Recently, two promising approaches have been suggested for
Tor: ExperimenTor [1] and Shadow [21]. Both of them address deployment and
automated testing. On the other hand, they are tightly integrated with Tor and
therefore difficult to extend or adapt to other applications and mixing concepts.
The main advantage of our framework in this respect is the high number of
different plug-ins available for comparison and the possibility of extension with
new proposals. Reproducibility of results is simplified as the source code of gMix
has been published and configuration files of individual experiments (containing
plug-in names, version numbers and parameters) can be released together with
a scientific publication (e. g., in the appendix or on a website).

To simplify testing we have included a load generator that automatically
instantiates several clients on a single workstation and makes them send messages
according to commonly used statistical models (e. g., according to a poisson
process or at a uniform rate). To support more realistic evaluations we plan to
add more advanced statistical traffic models as well as extend the load generator
to replay traffic according to log files recorded in real-world settings.

8 Performance Evaluation

Given the limited space and the high number of possible plug-in-combinations,
parameters and test scenarios, we have to focus on a small subset of evaluations
for this publication. The basic goal of this section is to assess the performance
of the framework and to demonstrate that Java and our architectural design of-
fer adequate performance to build practical mix systems rather than evaluating
the effects of different output or dummy policies. To this end, we focus on an
evaluation of the recoding scheme plug-ins (which introduce the highest compu-
tational cost of all mix components) and evaluate the influence of parallelization,
as the framework is optimized to take advantage of multi core systems. To de-
termine the throughput limits we performed several tests in a controlled lab
environment with 1 Gbit/s Ethernet (Setup 1: Lab Environment). In a second
test scenario (Setup 2: Emulated Environment), we add a network emulator to
reproduce one of the findings of [30], i. e., the negative influence of packet loss
when messages of different users are multiplexed over a single TCP connection.
Configuration files used for the experiments can be downloaded from the project
website (https://www.informatik.uni-hamburg.de/SVS/gmix/).

8.1 Test Parameters

All experiments have been carried out using multiple, identically configured off-
the-shelf desktop machines (Intel i5-2400 3.1GHz quad core CPUs, 8 GB RAM).

 0

 20

 40

 60

 80

 100

 120

 512 768 1024 1280 1536

T
h

ro
u

g
h

p
u

t
(M

B
/s

e
c
)

Mix message size (Byte)

NULL
LT-CH

SYM-CH
SPHINX

RSA-OFB

Fig. 5. Throughput for various message
sizes and recoding schemes

32,768

 2

 3

 4

S
P

H
IN

X

R
S

A
−

O
F

B

S
Y

M
−

C
H

L
T

−
C

H

S
P

H
IN

X

R
S

A
−

O
F

B

S
Y

M
−

C
H

L
T

−
C

H

S
P

H
IN

X

R
S

A
−

O
F

B

S
Y

M
−

C
H

L
T

−
C

H

S
p
e

e
d

u
p

Message Length
512 1,280

 1

Fig. 6. Speedup gained by using up to 4
recoding threads

The software environment consisted of CentOS 6 Linux running the OpenJDK
v1.6.0 22 64 bit ServerVM and Linux Kernel v2.6.32. The MTU value (maximum
transmission unit) within the network was 1500 bytes. Motivated by practical
anonymity systems, we use 128 bit AES keys (Tor and JonDonym) and 2048 bit
RSA keys. For Sphinx we use Dan Bernstein’s Curve25519 as suggested in [10].

8.2 Lab Environment

We start out by comparing the achievable throughput for all recoding schemes of
Table 2. The throughput refers to the payload only (excluding the overhead for
mix message headers). We deploy load generators on 4 workstations to simulate
a total of 32 clients that send mix packets at maximum rate to a single mix via
the Layer 1 plug-in Mix-Client TCP Round-robin Sync. I/O in simplex mode.

Figure 5 shows the throughput for various mix message lengths below the
MTU (1500 byte). Without cryptographic operations the mix achieves a through-
put of 116.1 MB/s (NULL cipher). The two channel schemes SYM-CH and LT-
CH (cells sent through anonymous channels are encrypted symmetrically only)
allow for up to 93 MB/s, the two schemes using a hybrid cryptosystem for each
message (SPHINX and RSA-OFB) for up to 22.3 MB/s and 0.7 MB/s, respec-
tively. Sphinx seems to be fast enough to saturate a 100 Mbit/s communication
line despite its hybrid cryptosystem. As expected, the aggregated throughput
increases with the message size for all plug-ins, as the constant overhead per
message for headers and switching between ciphers becomes less relevant.

Message dwell times, i. e., the time messages are delayed in the mix (measured
on Layer 1 with 512 byte message size) are below 1.2 ms (SYM-CH), 0.7 ms (LT-
CH), 1.2 ms (SPHINX) and 44.7 ms (RSA-OFB) for 95 % of messages.

Figure 6 shows the speedup, i. e., to what extent the recoding scheme plug-ins
benefit from the availability of multiple CPU cores. For instance, for a message
length of 512 bytes the throughput for Sphinx increases from 2.1 MB/s (which is
equivalent to a speedup of 1 for this scheme) to 4 MB/s (which is 1.9×2.1 MB/s)
if two threads are used. The two schemes using a hybrid cryptosystem benefit
most from multi-threading and scale almost linearly. On the other hand the

Mix
Client!

LoadGen! Mix 1! Mix 2!

Mix!
Mix!

Throughput
Analyzer!

netem!
60 ms RTT!
100 Mbit/s!
packet loss!

Fig. 7. Setup for emulated environment
(cf. Sect. 8.3)

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100 120

Th
ro

ug
hp

ut
 (M

B/
se

c)

Time (sec)

TCP-LOSS-0.00
UDP-LOSS-20.0
TCP-LOSS-0.01

Fig. 8. Effect of packet loss on multi-
plexed TCP connections

channel schemes profit less, as (depending on message size) two threads can be
enough to saturate the network.

We repeated our experiments using a single CPU core (with the Linux ker-
nel directive maxcpus=1) and found that the resulting throughput is still and
constantly well above 14 MB/s (SYM-CH), i. e., switching between Layer 1 and
Layer 2 threads (which is under control of the JVM) does not lead to fluctuating
throughput for communication links slower than 100 Mbit/s in our setup.

As a reference point for the perceived results, we measured throughput for
a Tor node (v0.2.2.35) in our test setting as well (using netio via tsocks). With
mix packets sized 512 byte (equal to Tor’s cell size), a maximum throughput of
46 MB/s is possible with the SYM-CH plug-in (quad core), while we measured
37 MB/s for the Tor node. The comparable performance is interesting as on the
one hand Tor is written in C, but on the other hand it does not support multi-
threading for message recoding. In this experiment our framework manages to
compensate for the slower performance of Java by a better utilization of the avail-
able hardware. In the end it achieves a similar throughput as an implementation
in C, at the cost of a higher number of instruction cycles (cf. the throughput of
only 14 MB/s in case of maxcpus=1). We conclude that – despite the use of Java
and its generic architecture – our framework offers adequate crypto performance
for practical scenarios with up to 100 Mbit/s links. Real-world performance, i. e.,
when mixes are distributed over the Internet, cannot be deduced from these re-
sults, though, due to network congestion, differing bandwidth of anon nodes and
predefined routes once packets have been sent (source routing) [12].

8.3 Emulated Environment

In the following experiment, we use a cascade of two mixes and shape traffic
using the freely available network link emulator Netem [25]4 to show one of the

4 A comparative study of network link emulators can be found in [27]. For even more
sophisticated evaluations, virtual network emulators (e. g., Emulab [39] or Modelnet
[35], like in [1]) can be employed.

findings of [30]: the negative influence of packet loss when messages of different
users are multiplexed over a single TCP connection. RTT between mixes was
set to 60 ms. Bandwidth was limited to 100 Mbit/s to assure crypto overhead is
not the limiting factor. The experimental setup is shown in Fig. 7.

We use the Mix-Mix TCP Multiplexed Sync. I/O plug-in between mixes and
configure the emulator to drop messages between the two mixes to show the
effect. For comparison, we provide results for the UDP Layer 1 plug-ins as well.
Figure 8 shows that even for low packet loss of 0.01 %, TCP throughput is highly
unstable as the messages of all users are blocked by a dropped message of a single
user, i. e., the operating system TCP buffer will not forward any data (possibly
packets of other users) until the lost packet is retransmitted. While this effect
was already shown in [30], we want to stress that we were able to reproduce this
finding simply by combining existing plug-ins and without writing a single line
of code.

9 Conclusion

In this paper we proposed a generic architecture for mixes and our open source
implementation, the gMix framework. First and foremost, the gMix framework
aims to provide easy access to the central components of a mix, which are struc-
tured into distinct logical layers. Secondly, we strive for easily understandable
implementations to allow developers to build a fully functional mix from a set
of rather simple components (plug-ins). Thirdly, the gMix framework aims to
improve the process of the evaluation of mixes. At the moment, this objective is
addressed with a load generator. Tools for test automation will be included in the
future. Moreover, the consequent use of configuration files ensures repeatability
of experiments and reproducibility of results.

We see our work as a first step towards the standardization of mix systems
which can help lower the bar for research of mixes as well as their deployment in
practice. In the long run we hope that the availability of a comprehensive soft-
ware framework will serve as an enabler for mixes and will lead to the increased
dissemination of privacy-enhancing technologies in existing and new application
areas as well as to new proposals that can be integrated into deployed systems
like Tor or JonDonym.

References

1. Bauer, K., Sherr, M., McCoy, D., Grunwald, D.: ExperimenTor: A Testbed for Safe
Realistic Tor Experimentation. In: Workshop on Cyber Security Experimentation
and Test (2011)

2. Berthold, O., Federrath, H., Köpsell, S.: Web MIXes: A System for Anonymous and
Unobservable Internet Access. In: Federrath, H. (ed.) Designing Privacy Enhancing
Technologies. vol. 2009, pp. 115–129. Springer Berlin, Heidelberg (2001)

3. Berthold, O., Langos, H.: Dummy Traffic Against Long Term Intersection Attacks.
In: Dingledine, R., Syverson, P.F. (eds.) Privacy Enhancing Technologies. LNCS,
vol. 2482, pp. 110–128. Springer (2002)

4. Böhme, R., Danezis, G., Dı́az, C., Köpsell, S., Pfitzmann, A.: On the PET Work-
shop Panel ”Mix Cascades Versus Peer-to-Peer: Is One Concept Superior?”. In:
Martin and Serjantov [26], pp. 243–255

5. Chaum, D.: Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms. Communications of the ACM 24(2), 84–90 (1981)

6. Cottrell, L.: Mixmaster and Remailer Attacks (1995), http://www.obscura.com/

~loki/remailer-essay.html

7. Danezis, G.: Mix-Networks with Restricted Routes. In: Dingledine [15], pp. 1–17
8. Danezis, G., Dı́az, C., Troncoso, C., Laurie, B.: Drac: An Architecture for Anony-

mous Low-Volume Communications. In: Atallah, M.J., Hopper, N.J. (eds.) Privacy
Enhancing Technologies. LNCS, vol. 6205, pp. 202–219. Springer (2010)

9. Danezis, G., Dingledine, R., Mathewson, N.: Mixminion: Design of a Type III
Anonymous Remailer Protocol. In: IEEE Symposium on Security and Privacy. pp.
2–15. IEEE Computer Society (2003)

10. Danezis, G., Goldberg, I.: Sphinx: A Compact and Provably Secure Mix Format. In:
IEEE Symposium on Security and Privacy. pp. 269–282. IEEE Computer Society
(2009)

11. Danezis, G., Sassaman, L.: Heartbeat Traffic to Counter (n-1) Attacks: Red-Green-
Black Mixes. In: Jajodia, S., Samarati, P., Syverson, P.F. (eds.) WPES. pp. 89–93.
ACM (2003)

12. Dhungel, P., Steiner, M., Rimac, I., Hilt, V., Ross, K.W.: Waiting for Anonymity:
Understanding Delays in the Tor Overlay. In: Peer-to-Peer Computing. pp. 1–4.
IEEE (2010)

13. Dı́az, C., Preneel, B.: Taxonomy of Mixes and Dummy Traffic. In: Deswarte, Y.,
Cuppens, F., Jajodia, S., Wang, L. (eds.) International Information Security Work-
shops. pp. 215–230. Kluwer (2004)

14. Dı́az, C., Serjantov, A.: Generalising Mixes. In: Dingledine [15], pp. 18–31
15. Dingledine, R. (ed.): Privacy Enhancing Technologies, LNCS, vol. 2760. Springer

(2003)
16. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The Second-Generation Onion

Router. In: 13th USENIX Security Symposium. pp. 303–320 (2004)
17. Dingledine, R., Shmatikov, V., Syverson, P.F.: Synchronous Batching: From Cas-

cades to Free Routes. In: Martin and Serjantov [26], pp. 186–206
18. Federrath, H., Fuchs, K.P., Herrmann, D., Piosecny, C.: Privacy-Preserving DNS:

Analysis of Broadcast, Range Queries and Mix-Based Protection Methods. In:
Atluri, V., Dı́az, C. (eds.) ESORICS. LNCS, vol. 6879, pp. 665–683. Springer (2011)

19. Federrath, H., Jerichow, A., Pfitzmann, A.: MIXes in Mobile Communication Sys-
tems: Location Management with Privacy. In: Anderson, R.J. (ed.) Information
Hiding. LNCS, vol. 1174, pp. 121–135. Springer (1996)

20. Huber, M., Mulazzani, M., Weippl, E.: Tor HTTP Usage and Information Leakage.
In: Decker, B.D., Schaumüller-Bichl, I. (eds.) Communications and Multimedia
Security. LNCS, vol. 6109, pp. 245–255. Springer (2010)

21. Jansen, R., Hopper, N.: Shadow: Running Tor in a Box for Accurate and Efficient
Experimentation. In: Proceedings of the Network and Distributed System Security
Symposium. Internet Society (2012)

22. Kate, A., Goldberg, I.: Using Sphinx to Improve Onion Routing Circuit Construc-
tion. In: Sion [34], pp. 359–366

23. Kesdogan, D., Egner, J., Büschkes, R.: Stop-and-Go-MIXes Providing Probabilistic
Anonymity in an Open System. In: Aucsmith, D. (ed.) Information Hiding. LNCS,
vol. 1525, pp. 83–98. Springer (1998)

24. Köpsell, S.: Vergleich der Verfahren zur Verhinderung von Replay-Angriffen der
Anonymisierungsdienste AN.ON und Tor. In: Dittmann, J. (ed.) Sicherheit 2006.
LNI, vol. 77, pp. 183–187. GI (2006)

25. Linux Foundation: Netem (2009), http://www.linuxfoundation.org/

collaborate/workgroups/networking/netem

26. Martin, D., Serjantov, A. (eds.): Privacy Enhancing Technologies, LNCS, vol. 3424.
Springer (2005)

27. Nussbaum, L., Richard, O.: A Comparative Study of Network Link Emulators.
In: Wainer, G.A., Shaffer, C.A., McGraw, R.M., Chinni, M.J. (eds.) SpringSim.
SCS/ACM (2009)

28. Park, C., Itoh, K., Kurosawa, K.: Efficient Anonymous Channel and All/nothing
Election Scheme. In: Workshop on the Theory and Application of Cryptographic
Techniques on Advances in Cryptology. pp. 248–259. EUROCRYPT ’93, Springer-
Verlag New York, Inc., Secaucus, NJ, USA (1994)

29. Pfitzmann, A., Pfitzmann, B., Waidner, M.: ISDN-MIXes: Untraceable Communi-
cation with Small Bandwidth Overhead. In: Effelsberg, W., Meuer, H.W., Müller,
G. (eds.) Kommunikation in Verteilten Systemen. Informatik-Fachberichte, vol.
267, pp. 451–463. Springer (1991)

30. Reardon, J., Goldberg, I.: Improving Tor using a TCP-over-DTLS Tunnel. In:
USENIX Security Symposium. pp. 119–134. USENIX Association (2009)

31. Sako, K., Kilian, J.: Receipt-Free Mix-Type Voting Scheme - A Practical Solution
to the Implementation of a Voting Booth. In: EUROCRYPT. pp. 393–403 (1995)

32. Serjantov, A.: A Fresh Look at the Generalised Mix Framework. In: Borisov, N.,
Golle, P. (eds.) Privacy Enhancing Technologies. LNCS, vol. 4776, pp. 17–29.
Springer (2007)

33. Serjantov, A., Dingledine, R., Syverson, P.F.: From a Trickle to a Flood: Active
Attacks on Several Mix Types. In: Petitcolas, F.A.P. (ed.) Information Hiding.
LNCS, vol. 2578, pp. 36–52. Springer (2002)

34. Sion, R. (ed.): Financial Cryptography and Data Security, LNCS, vol. 6052.
Springer (2010)

35. Vahdat, A., Yocum, K., Walsh, K., Mahadevan, P., Kostic, D., Chase, J.S., Becker,
D.: Scalability and Accuracy in a Large-Scale Network Emulator. In: OSDI (2002)

36. Venkitasubramaniam, P., Tong, L.: Anonymous Networking with Minimum La-
tency in Multihop Networks. In: IEEE Symposium on Security and Privacy. pp.
18–32. IEEE Computer Society (2008)

37. Wang, W., Motani, M., Srinivasan, V.: Dependent Link Padding Algorithms for
Low Latency Anonymity Systems. In: Ning, P., Syverson, P.F., Jha, S. (eds.) ACM
Conference on Computer and Communications Security. pp. 323–332. ACM (2008)

38. Westermann, B., Wendolsky, R., Pimenidis, L., Kesdogan, D.: Cryptographic Pro-
tocol Analysis of AN.ON. In: Sion [34], pp. 114–128

39. White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hi-
bler, M., Barb, C., Joglekar, A.: An Integrated Experimental Environment for
Distributed Systems and Networks. In: OSDI (2002)

