
Privacy-Preserving DNS:
Analysis of Broadcast, Range Queries and

Mix-based Protection Methods

Hannes Federrath1, Karl-Peter Fuchs1, Dominik Herrmann1,
Christopher Piosecny2

1Computer Science Department, University of Hamburg, Germany
2Dept. of Management Information Systems, University of Regensburg, Germany

Abstract. We propose a dedicated DNS Anonymity Service which pro-
tects users’ privacy. The design consists of two building blocks: a broad-
cast scheme for the distribution of a “top list” of DNS hostnames, and
low-latency Mixes for requesting the remaining hostnames unobservably.
We show that broadcasting the 10,000 most frequently queried hostnames
allows zero-latency lookups for over 80% of DNS queries at reasonable
cost. We demonstrate that the performance of the previously proposed
Range Queries approach severely suffers from high lookup latencies in a
real-world scenario.

1 Introduction

The Domain Name System (DNS), a globally distributed directory service, is
mainly used to translate domain names (hostnames) to IP addresses. The bulk
of the translation work is offloaded to DNS resolvers, which query the directory
service on behalf of users. Unfortunately, the DNS protocol does not account
for privacy. In fact, each DNS resolver has easy access to the IP addresses of
its users and the domain names they are interested in. The upcoming DNSSEC
protocol does not address in any way the confidentiality of DNS traffic, either.
In fact, this was a “deliberate design choice” [3].

During the last years a “third-party ecosystem” for DNS services has evolved.
Besides the ISPs there are many more providers offering DNS resolvers. The most
popular providers are Google Public DNS and OpenDNS.1 The DNS providers
advertize higher availability, protection from phishing and drive-by-downloads,
content filtering and higher performance. These services are also used to circum-
vent DNS-based censorship. The dissemination of alternative DNS servers has
increased significantly during the last years according to figures published by
OpenDNS: while they received 3 billion requests per day in September 20072,
this number has increased to 30 billion by 20103.
1 Homepages at http://code.google.com/speed/public-dns/ and http://opendns.com/
2 http://www.opendns.com/about/announcements/49/
3 http://blog.opendns.com/2011/01/24/2010-the-numbers-we-saw

http://code.google.com/speed/public-dns/
http://opendns.com/
http://www.opendns.com/about/announcements/49/
http://blog.opendns.com/2011/01/24/2010-the-numbers-we-saw

The benefits of public DNS servers come at a price: users must give up some
privacy. DNS providers have access to all the DNS queries of their users, which
may disclose their interests, relations and habits. Recent research results on user
session re-identification [21, 29] also suggest that long-term profiling of users
may be feasible solely based on the accessed hosts, enabling a malicious DNS
resolver to monitor users over long periods of time and at different locations.

Previous research on privacy-enhancing DNS has not resulted in readily avail-
able systems so far. In this paper we aim for a practical and usable solution that
allows users to access DNS resolvers privately, i. e., issue DNS queries without
disclosing the desired hostnames to the DNS provider. As shown in [20] and [15]
usability and especially low latency are crucial factors for the acceptance of Pri-
vacy Enhancing Technologies. Our solution addresses this challenge by trading
in a little amount of additional traffic for significantly lower latencies.

Contributions. Firstly, we propose a DNS Anonymity Service that can improve
privacy and performance at the same time through a combination of broadcast
and Mixes. Using real-world DNS traffic dumps we demonstrate the practicabil-
ity of our solution, which offers zero-latency and totally unobservable lookups for
up to 80 % of DNS requests. Secondly, we provide an extensive analysis on the
performance of the previously proposed Range Queries approach for real-world
web traffic, showing that lookup latencies dominate overall performance.

The rest of this paper is structured as follows. In Section 2 we review related
work, and we provide an overview of DNS in Section 3. We outline the archi-
tecture of our DNS Anonymity Service in Section 4. In Section 5 we present
our broadcast scheme for frequently accessed domain names, before we discuss
Mixes and Range Queries in Section 6. In Section 7 we present results from our
trace-driven simulations before we conclude the paper in Section 8.

2 Related Work

Previous research efforts regarding privacy-preserving access to DNS servers have
mainly focused on the concept of “Range Queries”, which achieves privacy by
hiding the queries of a client within a set of dummy queries. Zhao et al. [30]
propose a random-set Range Query approach using a single DNS resolver. We
will provide a detailed description in Section 6.2. Zhao et al. also propose an
improved Range Query scheme [31] inspired by Private Information Retrieval
[12]. Their improved scheme reduces the required bandwidth, but requires two
non-collaborating DNS resolvers running non-standard DNS software. Although
the authors suggest their schemes especially for web surfing applications, they
fail to demonstrate their practicability using empirical results. In contrast, our
study includes a performance evaluation using actual web traffic of a large user
group and a concrete implementation of Range Queries. This allows us to assess
the real-world performance of Zhao’s Range Query proposal.

Castillo-Perez et al. [8, 9] study privacy issues of DNS in a different context,
namely the ENUM protocol and the Object Naming Service (ONS). They pro-
pose a variation of the original Range Query scheme published by Zhao et al. in

[30] using multiple DNS resolvers in parallel. They implemented their proposal
in order to evaluate its performance. Their results are of limited relevance for
our scenario, though, as their evaluation setup does not resemble the effective
DNS topology on the Internet.

Lu and Tsudik propose PPDNS [22], a privacy-preserving DNS system, which
is also based on Range Queries, but uses a next-generation DNS infrastructure
based on distributed hashtables and peer-to-peer technologies. While PPDNS is
a promising approach, we do not expect that it will be widely adopted in the
near future due to the need for a completely different DNS infrastructure and
its high computational complexity, which requires special hardware.

We conclude that there is no readily available, practical solution for web
users to protect their DNS queries, and the performance of the proposed Range
Query schemes in real-world settings is unknown.

3 Overview of DNS and the Dataset

The Domain Name System is a distributed database which essentially maps
domain names to IP adresses. On each client machine there is a stub resolver,
a software component of the operating system, which relays DNS queries to
the local nameserver. Local nameservers, which are also called caching resolvers,
fetch the requested information (Resource Records) from the authoritative name-
servers or – whenever possible – from their cache. Each Resource Record has a
time-to-live (TTL) value, which indicates how long it can be cached by clients
and caching resolvers. The original DNS protocol does not contain any security
measures safeguarding integrity and privacy of messages. While integrity protec-
tion will become available with the adoption of DNSSEC [3], privacy of message
contents and protection of the identity of clients are open problems.

3.1 Characteristics of DNS Traffic

To outline the most relevant characteristics of DNS traffic we summarize the
main findings of two well-known studies from 2004 [6] and 2001 [19] and verify
and complement them with more recent statistics derived from our 2010 dataset.

An important attribute of DNS traffic is its low traffic volume. Brandhorst
et al. showed in their study that DNS packets are responsible for only 0.05%
of overall traffic [6]. In our logs the daily DNS traffic per user added up to
about 120KB with 33KB for requests and 87KB for replies. The average sizes
of request and reply packets were 36 and 102 bytes respectively. However the
low bandwidth requirement is not only a consequence of small request and reply
sizes. It is also due to the fact that Resource Records can be cached according
to their TTL by resolvers and clients. Jung et al. found that 60 % to 80% of all
requests could be answered using client-side caches [19].

We also found numerous request bursts in our logs, i. e., clients query for
several hostnames with little or no delay between requests. Further analysis
revealed two causes: (1) some websites embed media files from multiple domains,

Fig. 1. Overview of the DNS Anonymity Service

and (2) some web browsers pre-resolve all hostnames found in links on a site for
performance reasons. Thus, visiting www.wikipedia.org may result in up to 150
DNS queries, as each country has its own domain (e. g., de.wikipedia.org) linked
from the home page.

Another important characteristic of DNS traffic, which is beneficial for the
efficiency of caching, is that the popularity of hostnames follows a power-law
distribution [19]. A small set of popular hostnames is responsible for the vast
majority of all queries, while the “long tail” of remaining hostnames is queried
rarely. In the study of Jung et al. 68% of requests affected the 10% most popular
hosts. We found in our traces that the 10% most popular hostnames account
for 97.7% of the requests, and the 10,000 most popular hostnames account for
80.2 % of all requests.

3.2 Overview of the Dataset

We cooperated with the computer center of our university to retain a log of all
DNS queries from the student housing subnet in pseudonymized form. The log
file covers 159 days (from February to July 2010). During that time we observed
9,946,138 distinct hostnames from 4159 users in total. On average there were
2126 users active per day The original log file contains only DNS requests, but
lacks information on the replies. Therefore, we issued recursive DNS queries for
all hostnames to Google’s DNS resolver. We recorded the size of the query and
the reply packets as well as the lookup latency. We also obtained the TTL val-
ues for all hostnames by querying the respective authoritative nameservers. For
CNAME Resource Records we followed the trail until an A record was returned
and used the minimum of all observed TTL values to obtain the effective TTL.
NXDOMAIN replies were handled according to [2].

4 DNS Anonymity Service

The DNS Anonymity Service (cf. Fig. 1) consists of four components, namely a
DNS Client, a Mix Cascade, a Broadcast Mechanism and a DNS Resolver (“Re-
mote Resolver”). The DNS Client is installed on the user’s computer and acts
like a regular DNS resolver towards the users’ operating systems. The Remote

Resolver is shared by the clients and looks up DNS entries with the help of the
existing DNS infrastructure. Both, DNS Client and Remote Resolver employ
caching of replies according to the TTL value to avoid redundant queries. Com-
munication between DNS Client and Remote Resolver is protected by a Mix
Cascade (cf. Section 6).

The reason for this design is twofold: On the one hand, we want the whole
process of resolving to be transparent for the user. This enables users to keep
their usual web browser and additional software. On the other hand, we want
to avoid solutions that would require changes to the DNS infrastructure of the
Internet.

Attacker model. As the network infrastructure of the Internet does not offer
reliable broadcast, we assume that the broadcast messages are distributed con-
sistently to all clients, e. g., by employing Byzantine-fault-tolerant protocols such
as [10, 23].

The attacker model for our mix system resembles the attacker models of Tor
[14] and JonDonym (formerly AN.ON [5]), two deployed mix-based anonymiza-
tion systems for low-latency traffic. Specifically, we designed our system to pro-
tect against three types of local attackers, namely adversaries that control a single
(entry or middle) mix or a single communication line (A1) and adversaries that
control an exit mix (A2) or the DNS resolver (A3).

We explicitly do not consider a global passive adversary (GPA) with access
to all communication lines, as – at least in our web traffic scenario – a GPA can
deanonymize users by eavesdropping on HTTP traffic anyway. Initially we set
out to also include protection against adversaries controlling both, entry and exit
mixes (A4). The implementation presented in this paper does not protect against
such distributed adversaries, though (for reasons explained in Section 6.1). We
also do not consider attacks on the integrity of DNS replies by the exit mix or the
DNS resolver. Such attacks can be detected by the client once DNSSEC is widely
deployed. Finally, we assume that the attacker is computationally bounded and
cannot break the cryptographic primitives used.

5 Broadcasting Popular DNS Records

The power-law characteristics of DNS traffic mentioned in Section 3.1 suggest
that broadcasting the Resource Records of a small fraction of all hostnames
might cover the vast majority of all user traffic. As the replies for the affected
queries would be available to users immediately, this solution promises lower
latencies than existing non-anonymity providing DNS resolvers. From a security
point of view broadcasting is favorable as well since the affected queries can be
answered locally with the Resource Records cached in the DNS Client. As a
result, resolving of the affected queries becomes unobservable.

Despite the low traffic volume of the DNS protocol, it would be very inefficient
and impractical to broadcast all records of the distributed DNS database to
all clients due to the large number of registered domains and the long-tailed

distribution of query names.4 Therefore, we suggest a hybrid strategy. Combining
broadcast for popular hosts with Mixes for the remaining hosts allows us to find
a suitable trade-off between latency and bandwidth usage.

For this purpose, we define a complete ordered list H of all hostnames hi,
sorted by the total number of accesses in descending order. The list is split
after θ elements, resulting in two sublists, TopListθ and LongTailθ, i. e., H =
TopListθ ∪ LongTailθ and H = TopListθ ∩ LongTailθ = /O. h ∈ TopListθ if
rank(h) ≤ θ, otherwise h ∈ LongTailθ.

θ allows us to control the trade-off between latency and bandwidth usage, as
it determines the number of hosts to be broadcast. To choose an adequate θ, the
interdependent factors “cache hit ratio” (i. e., the percentage of requests affected
by broadcast) and “bandwidth requirement” (i. e., the cumulative size of all DNS
entries to be broadcast over time) must be considered. While the cache hit ratio
is determined by the power-law distribution, bandwidth requirement is limited
by the anonymity service’s and clients’ capacity. To improve the cache hit ratio,
further DNS entries must be broadcast, what in turn results in increased band-
width requirements. A more precise analysis of the interdependencies between
both factors is given in Section 7.1.

5.1 Obtaining the Most Popular Hosts

As all the queries for hostnames from the TopList are answered from a local
cache in the DNS Client, they are unobservable for the Anonymity Service.
Consequently, it is challenging for the Anonymity Service to obtain and maintain
the TopList. An obvious approach is to use global web statistics publicly available
from companies like Alexa, Com-Score or NetRatings (Strategy 1). They do not
represent the usage behavior of varying regionally dependent user groups due to
their global focus, though.

A more promising approach is to use the statistics of another DNS resolver
located in the same region as the anonymity service (Strategy 2). Opening the
DNS Anonymity Service’s Remote Resolver for public access (i. e., for users not
interested in anonymization) might provide appropriate statistics as well. Alter-
natively, DNS cache probing [25, 1] can be employed to assemble the TopList.

To fit the TopList as closely as possible to the Anonymity Service’s users,
rescinding the unobservability property of the broadcast mechanism (i. e., which
hosts where queried) is another option (Strategy 3). This should be achieved
without revealing which individual user queried which hostnames, of course.
With [26], [27] and [7] several well known protocols based on secure multiparty
computation techniques exist to solve this challenge, but they suffer from high
communicational and computational overhead.

A more pragmatic solution is client-side logging. Users could record the num-
ber of requests they were able to save for individual hosts due to broadcast of the

4 Given an estimate of 205.3 million domain names in Q4/2010 [28] and a size of
50 bytes for each Resource Record, a snapshot of the whole distributed DNS database
would amount to more than 9.5 GB.

TopList. If these user statistics were provided to the DNS Anonymity Service
in regular intervals (e. g., once a week) via an anonymous channel, the TopList
could be kept up to date. While the anonymous channel (e. g., provided by a
Mix Cascade) could hide which statistics belong to which users, communication
contents (i. e., the statistics themselves) would not be protected, rendering this
approach less secure than the protocols mentioned above. As a result, linking
user statistics could be possible by means of probabilistical profiling techniques
such as [29, 21]. Their impact would be limited though, since linking user statis-
tics with statistics derived from the Mix Cascade used to anonymize hostnames
from the long tail is hardly possible, since TopList ∩ LongTail = /O.

5.2 Realization of the Broadcast Mechanism

The broadcast mechanism consists of two parts: first of all, the DNS Anonymity
Service must refresh all entries in the TopList, since DNS records retrieved
from authoritative nameservers expire after a certain time. To this end we use a
database containing an entry for each hostname that supplies the corresponding
DNS record and a timestamp of its next expiration. A worker thread refreshes
the records just before expiration using the Remote Resolver.

Secondly, the TopList must be distributed to the clients. Immediately
after a client has established a connection to the DNS Anonymity Service, it
receives a complete copy of the TopList. As long as the client is connected to
the service, it receives a steady stream of incremental updates of the TopList.
An update for a record is broadcast only, if the respective record has actually
changed since the last update. Since according to [18] DNS records change rarely
in comparison to their TTL values, the data volume of incremental updates is
supposed to cause only little overhead. Additional reduction in bandwidth can
be achieved with compression as pointed out in [18] as well. The broadcast
mechanism in our prototype was implemented using TCP/IP unicast, i. e., the
DNS Anonymity Service delivers the TopList within a dedicated TCP stream to
each connected client. Efficiency could be increased using IP multicast [4].

6 Anonymizing the Long Tail

As outlined in Section 5 we broadcast only a small number of very popular
domains in the TopList. Thus, clients need a means to resolve hostnames from
the long tail without disclosing them to the resolver. In this paper we study the
effectiveness and performance of Mixes and Range Queries for this purpose.

6.1 Mixes

A Mix is a cryptographic technique to enable untraceable communication intro-
duced by David Chaum [11]. The basic idea is to route messages over several
independent communication proxies (called Mixes), which hide the communi-
cation relationship between senders and receivers. Chaum introduced Mixes for

asynchronous applications like electronic voting and e-mail, and he proposed
to employ a hybrid cryptosystem using asymmetric and symmetric keys on a
per-message basis. Pfitzmann et al. [24] and Goldschlag et al. [17] adapted this
concept for real-time protocols that can handle a continuous stream of data with
low latency. A client establishes a “channel” which can be used to send multiple
consecutive messages through the Mixes. To this end the client establishes shared
keys with every Mix using its asymmetric public key. The actual messages are
encrypted using fast symmetric ciphers. As all messages transferred within the
same channel are linkable, channels have to be switched regularly.

Chaum suggested to repeatedly collect messages until a certain threshold
m is reached and only then deliver (flush) all m messages at once in different
order to hide the true sender among all present senders. As DNS messages are
quite small and most of them are quite similar in size, the application of such
an output strategy seems feasible and also promising as it would allow for the
construction of a mix system resisting end-to-end attacks. Accordingly, we chose
to implement an unbiased, generic mix system instead of building on Tor or
JonDonym, both of which are highly optimized for TCP and HTTP traffic and
tailored to their respective network topologies. A new development in quite early
stage is ttdnsd5, the Tor TCP DNS daemon, which relays DNS queries via TCP
to DNS resolvers. Including the official version, without further tuning, in our
evaluation would not have allowed for a comparison on fair grounds, though.
The then current version 0.7 caused high traffic overhead (queries and replies
took up a full 512 byte cell each) and offered poor performance whenever the
TCP connection had to be re-established after periods of inactivity.

Security Analysis. The attackers considered in Section 4 may undermine the
protection of Mixes in various ways. A1 may record message sizes of query and
reply packets to infer the queried hostnames, exploiting characteristic patterns
caused by individual websites. We can thwart this attack by padding packets
to a common length. Learning all queried hostnames and being able to link
consecutive queries within a channel, A2 may carry out a user re-identification
attack and link consecutive channels. We can decrease the probability of its
success by using short-lived channels. While A3 has access to queries, too, he
cannot link queries originating from the same channel. A2 and A3 may detect
the presence of a certain user based on unique, immediately identifying queries,
which is out of the scope of our solution, though. A4 may correlate timings of
incoming and outgoing packets in order to totally deanonymize users. Foiling
this attack requires dummy traffic and synchronous batching [24].

Implementation. Our Mix implementation is written in Java using non-block-
ing I/O operations and the Bouncy Castle crypto provider. In extensive exper-
iments (not reported due to space limitations) we implemented and evaluated
several output strategies, e. g., timed and threshold batches with and without

5 Code repository at https://gitweb.torproject.org/ioerror/ttdnsd.git

https://gitweb.torproject.org/ioerror/ttdnsd.git

dummy traffic, but – even for very small batch sizes – we could not achieve
satisfying results in terms of latencies and overhead for any configuration. Thus,
we resorted to forward incoming messages immediately, i. e., our mix system
does not offer protection against A4. The implemented channel setup and replay
detection resemble JonDonym’s mechanisms. Channels are established with an
asymmetric cryptosystem (RSA 2048 bit keys) and switched every 60 seconds
to limit the information available to A2.

Requests and reply messages have fixed sizes to address A1 and are struc-
tured as follows: (MAC [16 bytes], length [2], fragmentID [1], payload including
padding [s]). For each mix a layer of encryption is applied using a symmetric
cipher (AES, 128 bit keys, OFB mode). To find an acceptable trade-off between
“message overhead” and the “number of fragmented packets”, we analyzed the
distribution (weighted by access frequency) of query and reply sizes. We deter-
mined squery = 57 bytes and sreply = 89 bytes fitting best. Once DNSSEC is
widely deployed, we can change s accordingly.

Our implementation includes several straightforward optimizations, e. g., new
channels are established in the background, Mixes use multiple threads to de-
crypt messages in parallel, and connections between Mixes are multiplexed.

6.2 Range Queries

Various Range Query schemes have been proposed for preserving the privacy of
DNS queries (cf. Section 2). Their benefits include a security model that does
not rely on the participation of other users and a simple topology, which does not
depend on relaying packets over multiple hops. In the following we describe the
Range Query scheme evaluated in this paper. It closely resembles the original
scheme introduced by Zhao et al. and improved upon by Castillo-Perez et al.
In contrast to the PPDNS scheme, which only operates on a DHT-based DNS
infrastructure, it is suitable for the DNS infrastructure deployed today.

Each time a client queries a domain name d, it constructs a query set Q(d),
of size n, comprised of d and n−1 dummy domain names. The client queries the
DNS resolver for each of the n names and receives n replies from the server, dis-
carding all but the desired one. Previous work [30, 31, 8] suggests that the client
should draw the dummies randomly and independently from a large database of
domain names. Assuming that the resolver cannot distinguish the dummies from
the desired queries, its chances to correctly guess the desired query are p = 1/n.
In order to counter intersection attacks mentioned in [9], which can be carried
out by an active adversary to uncover the desired hostname, the client uses the
same set of dummies for retransmissions of failed queries.

Castillo-Perez et al. and Lu and Tsudik have evaluated the performance of
prototypical implementations of their Range Query schemes. Their results are
not applicable to our scenario, though, because they assume that all queries can
be answered by the DNS resolver immediately, neglecting delays introduced by
recursive lookups. In contrast to previous work, we do study the influence of
lookup latencies, which may have a significant impact on the overall latencies of
Range Queries.

Security Analysis. The security of range queries depends on the resolver being
unable to tell apart dummies and actual queries. This assumption is challenged
by two traffic analysis attacks that exploit the characteristics of the DNS traffic
generated by web browsers, and which have not been studied previously. They
allow a malicious resolver to reduce the effective size of the range query whenever
consecutive queries are not independent from each other, e. g., for query bursts.
Firstly, the resolver could mount a semantic intersection attack by searching
for hostnames known to belong to the same site in consecutive ranges. Instead
of randomly and independently sampling dummy hostnames, the ranges must
be constructed using plausible sets of hostnames to foil such attacks. Effective
protection against intersection attacks is a complex issue, which is outside of the
scope of this paper, though, and left open for future work. Instead, we focus on
the second traffic analysis attack: the resolver might be able to mount a timing
attack to identify the dummy replies. If a client issues a range query as an imme-
diate consequence of having processed the desired reply of a previous range query
(e. g., when downloading embedded images served from various web servers), the
secondary query may reach the resolver before all the replies belonging to the
primary query have been received from the upstream DNS servers or sent to the
client. Thus, the resolver may deduce that all the pending replies of the previous
query are likely dummies. An active adversary could also maliciously send out
the replies in a trickle to increase the effectiveness of the attack.

Implementation. For the purpose of evaluation we built a DNS Range Query
client in Java. The client bundles up the Range Query into a single package,
which is compressed using the zlib library, and sends it to the server component
over a TCP socket. The server component resolves all queries in parallel using
the Remote Resolver and returns them to the client. We have implemented
two alternative strategies that aim to foil the timing attack mentioned above.
With the StallDesiredReply strategy the client waits until all replies of a range
query have been received and only then returns the desired answer to the caller.
The client can also employ the DelayConsecutiveQuery strategy, i. e., return
the desired reply to the caller immediately once it is available, but hold back
consecutive range queries issued before the still-pending query has been fully
processed. We will evaluate the two strategies in Section 7.3.

7 Evaluation

7.1 Broadcasting the TopList

In this section we evaluate the broadcast mechanism regarding cache hit ratio
and required bandwidth, taking into consideration the interdependencies be-
tween both factors as outlined in Section 5. Our main goal is to quantify the
trade-off between latency and bandwidth usage in order to choose an adequate
θ. For our simulations we selected a 24h-sample from our dataset. As we focus
on DNS queries issued by web browsers in this paper, we selected only type A
queries (2,591,240 requests, i. e., 95.7% of the sample).

Cache Hit Ratio. In a first experiment we examine the suitability of differ-
ent sources the TopList can be obtained from. We use three different TopLists
matching the scenarios described in Section 5. For evaluating Strategy 1 (the
use of global web statistics) we derived domain names from the Alexa top one
million hostlist. To mitigate the problems in terms of precision with this list, we
retrieved the contained web sites using an automated Firefox script. The occur-
ing DNS requests were recorded and combined to a new list with a cut-off after
θ elements (Global TopList). To analyze the second strategy we use the most
popular hosts obtained from a proxy server used by 50 German schools (Same
Region TopList). For the third strategy we have determined the most popu-
lar hosts from our DNS dataset to simulate a top list matching user behavior
perfectly (Optimal TopList).

In the following we discuss the results obtained through our simulations with
θ = 10000. As expected the highest hit rate (83.94%) was achieved with the Op-
timal TopList. Quite surprisingly the Same Region TopList provides comparable
results (68.72 %). With only 41.32 % the Global TopList performs worst, as ex-
pected. Surprisingly, hit rates can be further improved using a client-side cache,
which saves 15.72% of requests. Apparently the caching strategies of user-side
stub resolvers fail to exploit the full potential of caching.

In a second experiment we analyze the influence of θ on the cache hit ratio.
We used the Optimal TopList with varying values for θ between 100 and 100,000.
Hit rates from client-side caches were included in the simulation. With a TopList
of 100 hosts a hit ratio of 40.02 % was achieved. For θ = 1000 and θ = 10000
the TopList can satisfy 63.94% and 83.94% of requests, respectively. Raising θ
above 10,000 leads to minor improvements only. At θ = 100000 a hit ratio of
94.54 % was achieved.

Required Bandwidth. We implemented the broadcast mechanism to measure
its bandwidth requirements for varying values of θ using our Optimal TopList.
Therefore, we set up a local instance of the BIND nameserver. We configured
BIND to resemble the behavior of typical third-party resolvers by enabling the
minimal-responses configuration directive. For experimental purposes we dis-
abled BIND’s internal cache and configured it to forward all queries immediately
to the authoritative nameservers.

We analyze the traffic requirements separately from the perspective of the
DNS Anonymity Service, which must continuously refresh its database, and from
the perspective of a client of the service.

Traffic for refreshing the TopList. The traffic volume caused by refreshing the
TopList database amounts to the traffic caused by DNS requests and replies
issued by the DNS Anonymity Service whenever an entry expires. The traffic
volume is independent of the number of clients. The daily traffic and the average
number of queries per second are shown in Fig. 2 for varying values of θ. The
figure indicates that the cost per additional hostname is constant up to θ = 2000
and decreases slightly from there onwards. The daily traffic volume required for

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2000 4000 6000 8000 10000
 0

 5

 10

 15

 20

 25

 30

 35

 40

T
ra

ffi
c

V
ol

um
e

[M
iB

]

Q
ue

rie
s

pe
r

S
ec

on
d

Size of TopList θ

Traffic
Queries

Fig. 2. Refreshing the TopList

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 2000 4000 6000 8000 10000

T
ra

ffi
c

fo
r

in
iti

al
 d

ow
nl

oa
d

[K
iB

]

T
ra

ffi
c

fo
r

in
cr

. u
pd

at
es

 [K
iB

/h
]

Size of TopList θ

Initial Download
Incremental Updates

Fig. 3. Distribution to Clients

refreshing a TopList with θ = 10000 is approximately 352.37 MB. On average the
DNS Anonymity Service will have to issue 38.89 queries per second to keep all
hostnames up to date. The majority of queries (and therefore traffic) pertains to a
small fraction of hosts with TTL=60 (1,733 of 10,000 hostnames). In future work
we will study optimizations such as enforcing a minimum TTL>60 seconds for all
broadcast hostnames and advanced caching methods for round robin DNS replies
that are used by many popular web sites for load balancing. Advanced schemes,
which make authoritative servers push revocations or update notifications to
resolvers, are also promising.

Traffic for distributing the TopList to the clients. The distribution of the TopList
database to clients consists of two parts. Whenever a client connects to the
DNS Anonymity Service, it receives a full copy of the TopList. After that it
receives a steady stream of incremental updates. Using our measurement setup
we determined the traffic volume for the initial download of the TopList and
for receiving the incremental updates. The results are shown in Fig. 3. The
initial download of the TopList amounts to 850 KB for θ = 10000. On average
the incremental updates cost 2.58 MB per hour and client (62.02 MB per day
and client), which can be streamed with a bandwidth of less than 0.8 KB/s to
each client. For 2000 connected clients, broadcasting the TopList consumes a
bandwidth of 1.44 MB/s.

Further measurements indicate that the amount of traffic can be reduced con-
siderably by compression. Using the zlib library, we reduced the initial download
size on average by almost two thirds (290 KB for θ = 10000), while the volume
of the incremental updates was cut by roughly 40% (to 1.5 MB/h). This finding
matches the results in [18].

7.2 Trace-Driven Simulations

We evaluate our implementations of Mixes and Range Queries using trace-driven
simulations. This approach allows us to study the effectiveness and performance
under different loads induced by real users in a controlled environment. In each

experiment we replay actual traffic from the log files in real-time to obtain statis-
tics regarding bandwidth and latency.

In a pretest we found that experimental results stabilize already after a very
short time. Thus, we randomly selected 10 chunks from the log file, each con-
taining the traffic of a continuous two-hour period. For ease of exposition we
will only provide results for one sample. We repeated the experiments with the
remaining samples and validated the results presented in this section. The se-
lected sample contains the DNS queries of 2082 users issued on April 20th, 2010
between 7.00 pm and 9.00 pm. Again, we selected queries of type A only. The
resulting log file contains 465,435 requests for 193,133 distinct hostnames.

To allow for a fine-grained analysis of the latencies introduced by our system,
we decided to start out neglecting network latencies and congestion, as both are
known to dominate overall latencies in practical mix systems. Therefore, the first
set of experiments was carried out in a local 1000Mbit network (cf. Section 7.3).
We dedicated a second set of experiments to the analysis of network latencies
and congestion to study the expected real-world performance (cf. Section 7.4).

For both sets of experiments, we have implemented a DNS traffic simulator,
which instrumented a number of DNS client processes (one per simulated user)
according to the recorded traffic from the log file. The traffic simulator and the
DNS client processes were running on a single machine. The Remote Resolver
artificially delayed queries according to the lookup latency τl (see below) recorded
in our dataset. For the evaluation of the Mix system we set up three Mix nodes,
a common configuration also used by JonDonym and Tor, on three dedicated
machines with a single DNS resolver on the last machine. Range Queries were
evaluated using a DNS resolver with a thread pool of 1,500 workers running on
a single machine. All machines were equipped with an Intel Core Duo 2.8GHz
CPU and 4 GB of RAM.

7.3 Performance Comparison of Mixes and Range Queries

In the following we provide the results of the trace-driven simulations for various
configurations (first set of experiments). Client-side caches were enabled.

Reported Latencies. We model the user-perceived latency as τ = τc + τp + τl,
i. e., it consists of the client network latency τc between the user’s machine and
the Anonymity Service, the processing latency τp within the Anonymity Service
and the lookup latency τl for resolving the query at the Remote Resolver. In our
experiments we determine the user-perceived latency by measuring the differ-
ence between the time when the client sends the query and the time it receives the
corresponding reply. The reported latency values refer only to the queries that
are relayed to the server component, i. e., local cache hits and requests for host-
names contained in the TopList are not included for clarity reasons. Including
them would bring down the reported figures to 0 for most experiments. In fact
user-perceived latency is 0 seconds for the majority of queries, if the TopList is
enabled, of course (cf. Section 7.1).

 0

 20

 40

 60

 80

 100

 120

 140

 160

Original
all requests

Mixes
all req.

Mixes
LongTail only

Q
ue

ry
 L

at
en

cy
 [m

se
c]

Cache disabled
Cache enabled

Fig. 4. Latency for Mixes

 0

 500

 1000

 1500

 2000

 2500

 3000

 10 50 100

Q
ue

ry
 L

at
en

cy
 [m

se
c]

Size of Range

Cache enabled
Cache disabled

Fig. 5. Latency for Range Queries

Mixes. The results for four configurations using Mixes are shown in Fig. 4. Each
boxplot shows the minimum latency, the percentile for 25 % the median and
the percentiles for 75% and 90%. The baseline configuration (“Original, cache
disabled”) shows the user-perceived latency, i. e., the distribution of τl, without
our techniques. The median is 9.2ms, and the 90% percentile is 46.2ms.

The configuration “Mixes all requests” consists of Mixes only (no TopList
broadcasting, no caching on the Remote Resolver). The median increases slightly
to 10.9 ms, and 90% of the queries were answered within 52ms.

Enabling the shared cache on the Remote Resolver (“Cache enabled”) brings
down latencies significantly: 75 % of the queries are answered within 10 ms.
About 60% of the requests scored cache hits in the Remote Resolver, which
matches the findings in [19]. We found the majority of cache hits to be scored
by hosts contained in the TopList. Therefore, cache effectiveness is expected to
decrease once the TopList is enabled.

The configuration “Mixes LongTail only” shows the latencies observed for the
hostnames contained in the LongTail set, i. e., for the queries remaining if the
client has access to a TopList (θ = 10000). Latencies are higher in this config-
uration as the average latency for hostnames from the TopList is considerably
smaller (35.25 ms) than for all hostnames on overall (79.74 ms). As expected
effectiveness of the cache on the Remote Resolver is limited in this scenario.

The results show that the overhead introduced by the cryptographic opera-
tions carried out by Mixes is small. User-perceived latencies will mainly depend
on network latencies between clients and Mixes as well as on congestion effects.
We study their influence in Section 7.4.

Range Queries. We also measured latency of Range Queries with range sizes
n = 10, 50, 100 in our environment. Again, we neglect network delays for now.

The DNS Client creates ranges by randomly drawing dummies without re-
placement from the set of 193,133 hostnames contained in our dataset. This
limitation is artificially introduced by the nature of our trace-driven simulation:
we need to know τl for every hostname – and also for all possible dummy host-

names. In reality the dummies should be drawn from a much larger set, ideally
from the set of all currently active hostnames on the Internet.

The overhead introduced by our Range Query implementation is negligible
for isolated queries: we observed that τl of the desired query remained virtually
unaffected for range sizes between 10 and 1000. In the following, we focus our
analysis on the performance impact of the two strategies to counter the timing
attack described in Section 6.2. Fig. 5 shows the perceived latency with the
optimal TopList (θ = 10000) and the StallDesiredReply strategy enabled. We
observe that latencies are much higher than τl of the desired replies. Even for
n = 10 50% of the requests take longer than 206 ms. For n = 50 and n = 100 the
median is well above 500 ms and 1200 ms, respectively. Not a single Range Query
could be fully answered from the cache in our experiments. The performance
impact of this strategy is due to holding back the desired reply until the slowest
(dummy) reply has been received by the client.

Chances of at least one slow query to be included are very high when they are
drawn randomly from the whole population. Given a population of N hostnames
containing αN “slow hostnames” with τl > T , the probability that a randomly
assembled range query of size n does contain at least one slow hostname can be
obtained using the hypergeometric distribution:

Pn
T = P (X > 0) = 1− P (X = 0) = 1−

(
αN
0

)(
(1−α)N

n

)(
N
n

) = 1−
(
(1−α)N

n

)(
N
n

)
For T = 200ms we obtained α = 7 %, i. e., P 10

200ms ≈ 0.516 and P 100
200ms ≈

0.999, which explains the poor performance of the StallDesiredReply strategy.
We expected the DelayConsecutiveQuery strategy, which achieves low latencies
for singular queries at the cost of only delaying closely following queries, to
achieve lower latencies on overall. The results indicate otherwise, though: even
for small ranges (n = 10, cache on Remote Resolver disabled) the median is
already 407ms (90 % percentile: 10.45 s). Further analysis suggests that about
50% of queries have to wait for their predecessors. In conclusion we find that,
while a basic range query scheme may be fast, obscuring timing patterns of web
browsers comes at a considerable cost.

7.4 Real World Latencies

In this section we present the results of the second set of experiments that aim
at assessing the real world performance of our system by taking into account
network latencies. We extend the experimental setup of the previous section by
deploying WANem6 delay boxes between network nodes, which are capable of
simulating network latencies and congestion. To parameterize the delay boxes
realistically we have cooperated with the JonDonym project, which kindly pro-
vided us with common network parameters derived from mixes actually deployed
in their cascades across Europe (RTT between mixes: 20 ms; bandwidth of mixes:
6 http://wanem.sourceforge.net/

Table 1. Effects of network delays and congestion on performance of Mix Cas-
cade. The results for our trace show user-perceived latency (τc + τp + τl), while
the results for various synthetic loads with the given constant query rate include
τc + τp only.

percentile our trace synthetic 100 500 1000 2000 3000 4000 5000
50% 171 139 139 141 245 342 527 1389
90% 274 140 144 168 341 580 1544 7783

100Mbit). For client delay boxes we used a latency of 40 ms, which reflects the
widespread RTT of about 80 ms for common ADSL connections.

The resulting user-perceived latencies (τ) are shown in Table 1 for our trace-
driven simulations with 2082 users (107 queries/s on average): in comparison to
the measurements without delay boxes latencies for the 50% (171 ms) and 75%
(274 ms) percentiles increase by 160ms and 222ms, respectively. Given that the
sum of simulated network latencies is 120 ms, congestion effects are barely visible
for this load. Total latencies are still low enough for practical usage.

To study the effects of congestion we induced synthetic traffic, i. e., we sent a
constant number of queries per second (qps) to the cascade and measured laten-
cies for different query rates (cf. Table 1). Until 1000 qps, little to no congestion
is visible. Between 1000 qps and 3000 qps latencies start to increase noticeably
with the load, although some users may find them still acceptable for practi-
cal usage. Above 3000 qps, effects of congestion are apparently dominating the
performance of the cascade: latencies become unacceptably high.

A straightforward and scalable solution to prevent congestion in practice
is to deploy multiple redundant mix cascades. As this would lead to splitted
anonymity groups and may have a negative impact on privacy, the adoption
of Free Routes or intermediate solutions like expander graphs [13] or stratified
networks [16] would be worth consideration. As our current implementation is
capable of handling a rather high number of participants already, we leave the
study of further topologies to future work.

7.5 Traffic Overhead

We measure the traffic overhead by comparing the size of the original query and
reply packets in our DNS dataset (“Original”) with the traffic volume for Mixes
and Range Queries. The resulting overhead is shown in Table 2. Due to message
padding and multiple layers of encryption our mix system increases traffic by
99%. This is considerably less than the overhead for Range Queries.

Interestingly, the overhead for Range Queries is not as high as expected.
Without compression, traffic increases by only 583 % instead of the expected
900% for n = 10 (not shown in table). This can be explained by the fact that
dummies are drawn uniformly from the set of all hostnames. While the (by access
frequency) weighted average size of the DNS replies issued by our users is 102

Table 2. Traffic overhead relative to the original traffic volume for the two hour
trace (compression enabled for Range Queries and refreshing the TopList)

Original Mix RQ 10 RQ 50 RQ 100
A B A B A B A B A B

No TopList 1 − 1.99 − 4.14 − 14.05 − 23.53 −
θ = 10000 0.15 105.5 0.32 105.7 0.80 106.1 2.81 108.1 5.08 110.4
θ = 1000 0.36 23.34 0.55 23.53 1.81 24.79 6.67 29.66 12.42 35.40
θ = 100 0.63 4.10 0.83 4.30 3.01 6.48 11.10 14.57 20.66 24.13

bytes, the average unweighted reply size is only 72 bytes. Even with compression
the overhead is still 314 % for n = 10, though.

The table also indicates the traffic savings gained by the TopList for vari-
ous values of θ. The columns labelled with “A” depict the overhead when traffic
needed for refreshing the TopList is neglected, while the “B”-columns incorpo-
rate this traffic. It is apparent from the numbers, that the overhead caused by
refreshing the TopList significantly outweighs the remainder. We want to stress
that the absolute traffic volume is still manageable, though: on average each
user transferred 3245KB (including 3096KB for refreshing the TopList with
θ = 10000) in the Mix configuration within the two hours of simulation.

8 Conclusion

We proposed a DNS Anonymity Service, which combines broadcast with Mixes
in order to trade in traffic volume for low latencies, which are critical for DNS.
Our proposal exploits the power-law characteristics of DNS traffic to offer im-
provements on both, privacy and performance, at the same time. We found that
broadcasting a small fraction of all hostnames enables unobservability for a large
share of user traffic. Moreover, the broadcasted DNS responses are available to
users immediately, i. e., faster than with common non-anonymous third-party
DNS resolvers. This property of the DNS Anonymity Service may serve as an
effective incentive to foster its adoption. Our broadcast component can also be
used by conventional DNS providers, who want to offer superior performance.

Moreover, we have evaluated the applicability of Range Queries and Mixes
for anonymizing the remaining hostnames with real traffic traces. We found that
Range Queries offer poor performance, if dummy hosts are randomly drawn
from a large set of hostnames and protection against timing attacks is desired,
while Mixes do not introduce considerable delays apart from network latencies.
Regarding privacy, a definitive comparison of the two systems is difficult to
obtain, due to their different topology and techniques. The security of Mixes
and their limitations is well-understood, enabling us to build a practical low-
latency system. In light of attacks that exploit semantic interdependencies of
queries, the security of Range Queries for web traffic seems much more fragile.
It depends on a good source for dummy hostnames as well as a secure range
construction scheme, both of which being fertile areas for future work.

Acknowledgements

We thank the anonymous reviewers, Jaideep Vaidya and Benedikt Westermann
for their critical feedback. This work has been partially sponsored and supported
by the European Regional Development Fund (ERDF).

References

[1] Akcan, H., Suel, T., Brönnimann, H.: Geographic Web Usage Estimation By
Monitoring DNS Caches. In: Proceedings of the first international workshop
on Location and the web. LOCWEB ’08, vol. 300, pp. 85–92. ACM, New
York, NY, USA (2008)

[2] Andrews, M.: Negative Caching of DNS Queries (DNS NCACHE). RFC
2308 (1998)

[3] Arends, R., Austein, R., Larson, M., Massey, D., Rose, S.: DNS Security
Introduction and Requirements. RFC 4033 (2005)

[4] Armstrong, S., Freier, A., Marzullo, K.: Multicast Transport Protocol. RFC
1301 (1992)

[5] Berthold, O., Federrath, H., Köpsell, S.: Web MIXes: a system for anony-
mous and unobservable Internet access. In: International workshop on De-
signing privacy enhancing technologies: design issues in anonymity and un-
observability. pp. 115–129. Springer-Verlag, New York, USA (2001)

[6] Brandhorst, C., Pras, A.: DNS: A Statistical Analysis of Name Server Traffic
at Local Network-to-Internet Connections. EUNICE 2005: Networks and
Applications Towards a Ubiquitously Connected World pp. 255–270 (2006)

[7] Burkhart, M., Dimitropoulos, X.: Fast Privacy–Preserving Top–k Queries
using Secret Sharing. In: Proceedings of 19th International Conference on
Computer Communications and Networks (ICCCN). pp. 1–7. IEEE (2010)

[8] Castillo-Perez, S., García-Alfaro, J.: Anonymous Resolution of DNS
Queries. In: OTM 2008: On the Move to Meaningful Internet Systems,
Monterrey, Mexico, Proceedings, Part II. pp. 987–1000. Springer-Verlag,
LNCS 5332 (2008)

[9] Castillo-Perez, S., García-Alfaro, J.: Evaluation of Two Privacy–Preserving
Protocols for the DNS. In: Proceedings of the Sixth International Con-
ference on Information Technology: New Generations. pp. 411–416. IEEE
Computer Society, Washington, DC, USA (2009)

[10] Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: Proceedings
of the third symposium on Operating systems design and implementation.
pp. 173–186. OSDI ’99, USENIX Association, Berkeley, CA, USA (1999)

[11] Chaum, D.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM 24(2), pp. 84–90 (1981)

[12] Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private Information
Retrieval. In: Proceedings of the 36th Annual Symposium on Foundations
of Computer Science, Milwaukee, Wisconsin. pp. 41–50. IEEE Computer
Society (1995)

[13] Danezis, G.: Mix-networks with Restricted Routes. In: Proceedings of Pri-
vacy Enhancing Technologies workshop (PET 2003). pp. 1–17. Springer-
Verlag, LNCS 2760 (2003)

[14] Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: The Second–
Generation Onion Router. In: Proceedings of the 13th USENIX Security
Symposium. pp. 303–320. USENIX, Berkeley (2004)

[15] Dingledine, R., Serjantov, A., Syverson, P.F.: Blending Different Latency
Traffic with Alpha–mixing. In: Proceedings of Privacy Enhancing Technolo-
gies (PET 2006). pp. 245–257. Springer-Verlag, LNCS 4258 (2006)

[16] Dingledine, R., Shmatikov, V., Syverson, P.: Synchronous batching: From
cascades to free routes. In: Proceedings of Privacy Enhancing Technologies
workshop (PET 2004). pp. 186–206. Springer-Verlag, LNCS 2424 (2004)

[17] Goldschlag, D., Reed, M., Syverson, P.: Onion routing. Communications of
the ACM 42(2), pp. 39–41 (1999)

[18] Handley, M., Greenhalgh, A.: The case for pushing DNS. In: ACM Work-
shop on Hot Topics in Networking (Hotnets) (2005)

[19] Jung, J., Sit, E., Balakrishnan, H., Morris, R.: DNS Performance and the
Effectiveness of Caching. IEEE/ACM Transactions on Networking (TON)
10(5), pp. 589–603 (2002)

[20] Köpsell, S.: Low Latency Anonymous Communication – How long are users
willing to wait? In: Emerging Trends in Information and Communication
Security: International Conference, ETRICS 2006, Freiburg, Germany. pp.
221–237. Springer-Verlag, LNCS 3995, Berlin, Heidelberg (2006)

[21] Kumpošt, M., Matyáš, V.: User Profiling and Re–identification: Case of
University–Wide Network Analysis. In: TrustBus ’09: Proceedings of the 6th
International Conference on Trust, Privacy and Security in Digital Business.
pp. 1–10. Springer-Verlag, Berlin, Heidelberg (2009)

[22] Lu, Y., Tsudik, G.: Towards Plugging Privacy Leaks in the Domain Name
System. In: Proceedings of the Tenth International Conference on Peer–to–
Peer Computing (P2P). pp. 1–10. IEEE, IEEE (2010)

[23] Pease, M., Shostak, R., Lamport, L.: Reaching Agreement in the Presence
of Faults. J. ACM 27, 228–234 (1980)

[24] Pfitzmann, A., Pfitzmann, B., Waidner, M.: ISDN-MIXes: Untraceable
Communication with Very Small Bandwidth Overhead. In: Proc. GI/ITG-
Conference “Kommunikation in Verteilten Systemen” (Communication in
Distributed Systems). pp. 451–463 (1991)

[25] Rajab, M.A., Monrose, F., Provos, N.: Peeking Through the Cloud: Client
Density Estimation via DNS Cache Probing. ACM Trans. Internet Technol.
10, 9:1–9:21 (2010)

[26] Vaidya, J., Clifton, C.: Privacy–Preserving Top–k Queries. In: Proceedings
of the 21st International Conference on Data Engineering (ICDE). pp. 545–
546. IEEE Computer Society (2005)

[27] Vaidya, J., Clifton, C.: Privacy–Preserving Kth Element Score over Verti-
cally Partitioned Data. IEEE Trans. Knowl. Data Eng. 21(2), pp. 253–258
(2009)

[28] Verisign Inc.: The Domain Name Industry Brief. http://verisigninc.com/
assets/domain-name-report-feb-2011.pdf (February 2011)

[29] Yang, Y.C.: Web user behavioral profiling for user identification. Decision
Support Systems 49, 261–271 (2010)

[30] Zhao, F., Hori, Y., Sakurai, K.: Analysis of Privacy Disclosure in DNS
Query. In: Proceedings of the 2007 International Conference on Multimedia
and Ubiquitous Engineering (MUE 2007). pp. 952–957. IEEE Computer
Society (2007)

[31] Zhao, F., Hori, Y., Sakurai, K.: Two–Servers PIR Based DNS Query Scheme
with Privacy–Preserving. In: Proceedings of the The 2007 International
Conference on Intelligent Pervasive Computing. pp. 299–302. IEEE Com-
puter Society (2007)

http://verisigninc.com/assets/domain-name-report-feb-2011.pdf
http://verisigninc.com/assets/domain-name-report-feb-2011.pdf

