Löschen im Internet

Erhebliche Diskrepanz zwischen Erwartung und Realität

Prof. Dr. Hannes Federrath
Universität Regensburg / Uni Hamburg (ab 1.4.11)
http://www-sec.uni-regensburg.de

Saarbrücken 22.2.11

Schutzziele (Voydock, Kent 1983)

 Klassische IT-Sicherheit berücksichtigt im Wesentlichen Risiken, die durch regelwidriges Verhalten in IT-Systemen entstehen.

Vertraulichkeit

unbefugter Informationsgewinn

Integrität

unbefugte Modifikation

Verfügbarkeit

unbefugte Beeinträchtigung der Funktionalität

Angreifermodell

Vertraulichkeit

unbefugter Informationsgewinn

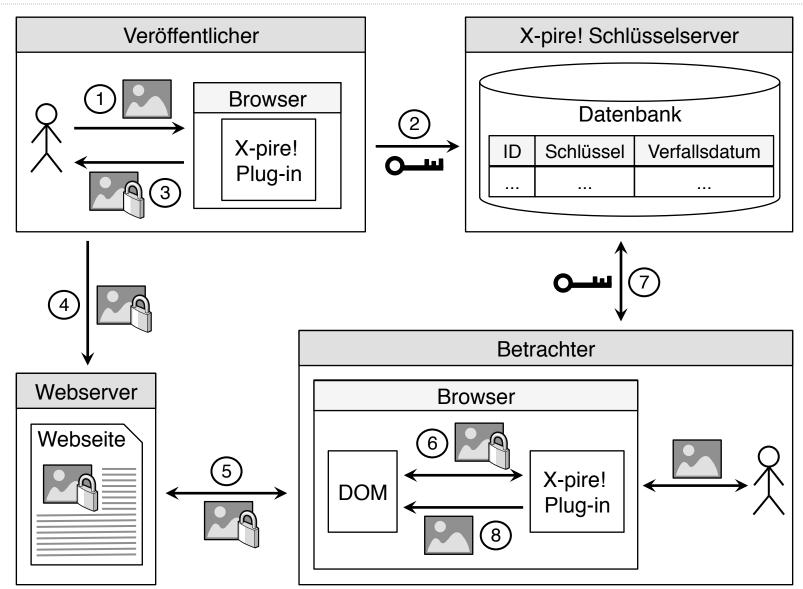
- Outsider
 - Betrachter des Inhalts
- Insider
 - Betreiber des Radiergummi-Systems (Schlüssel)
 - Betreiber des Speicher-Systems (geschützter Inhalt)

Angreifermodell

Schutz vor einem allmächtigen Angreifer ist unmöglich.

Das Angreifermodell definiert die maximal berücksichtigte Stärke eines Angreifers, gegen den ein Schutzmechanismus gerade noch wirkt.

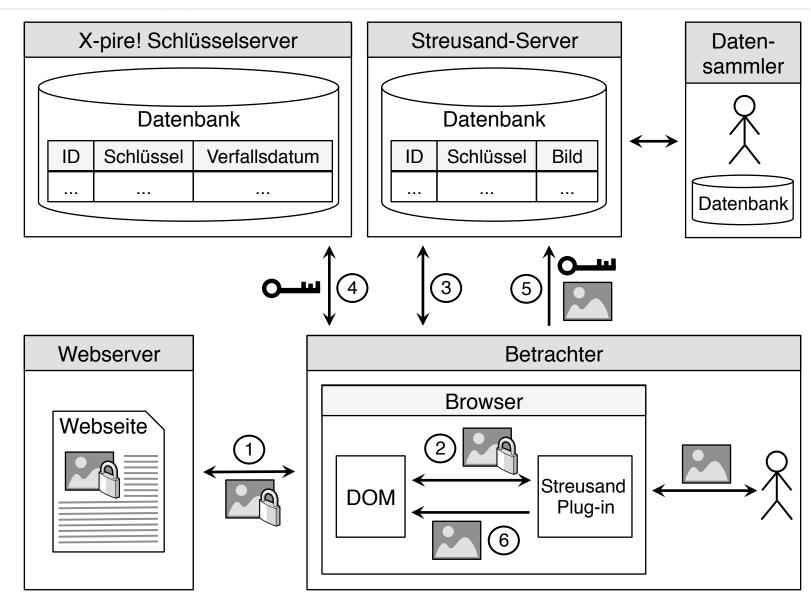
- Es beschreibt die
 - Rollen des Angreifers (Insider, Outsider, ...)
 - Verbreitung des Angreifers
 - Verhalten des Angreifers
 - passiv / aktiv
 - Rechenkapazität des Angreifers
 - unbeschränkt: informationstheoretisch
 - beschränkt: komplexitätstheoretisch



Erreichbare Sicherheit

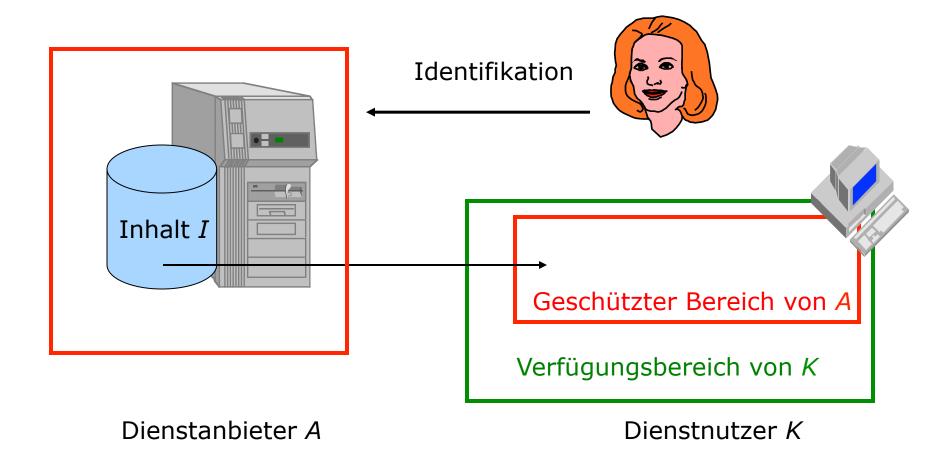
- (informations)theoretisch sicher
- (kryptographisch) stark (beweisbar)
 - » gegen aktive Angriffe
 - » gegen passive Angriffe
- wohluntersucht (praktisch sicher)
 - » Chaos
 - » Zahlentheorie
- [geheim gehaltene]
- unbedingt sicher
- perfekt sicher
- probabilistisch sicher
- ..
- Dies alles hat nahezu nichts mit der Aussage »100-prozentige Sicherheit gibt es nicht« zu tun!

Funktionsweise X-pire!

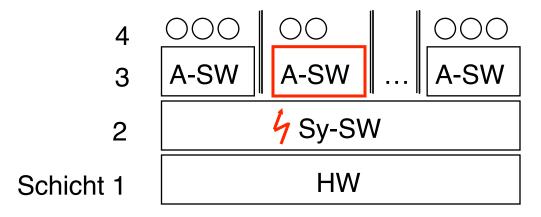


Sicherheitsaspekte

- Zentraler Schlüsselserver
 - Verfügbarkeit: single-point-of-failure
 - Vertraulichkeit: Datenbank-Betreiber kennt alle Schlüssel
 - Erweiterungen denkbar:
 - Verteilte Datenbanken
 - Verwendung von Secret-Sharing-Verfahren und Anonymitätstechniken
- Kein Schutz gegen Angreifer in der Rolle »Betrachter«
 - Software im Verfügungsbereich des Betrachters (Browser) erhält Zugriff auf Schlüssel und unverschlüsselten Inhalt
 - Weder Verschlüsselung noch CAPTACHs helfen hier!
 - Streisand-Effekt


Funktionsweise Streusand

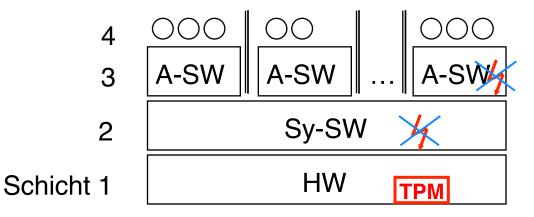
Das DRM-Problem


 Einem Kunden K einen Inhalt I in einer bestimmten Weise zugänglich machen, ihm aber daran hindern, <u>alles</u> damit tun zu können.

Frei programmierbarer Universal-PC

- Ausführungs-Schichtenstruktur
 - Objekte können vor den darunter liegenden Schichten nicht effizient geschützt werden.
- Folge:
 - Auf frei programmieren PCs werden Multimedia-Objekte nie wirklich schützbar sein.

Multimedia-ObjektA-SW AnwendungssoftwareSy-SW SystemsoftwareHW Hardware


[Nicht] Frei programmierbarer Universal-PC

Abwehr:

- spezielle Hardware (Tamper Proof Module, TPM), die im PC eingebaut ist
- schützt vor Ausführung nicht autorisierter Programme

Folge:

 Es können nur noch offizielle Programme mit einem geschützten Inhalt verwendet werden.

Multimedia-ObjektA-SW AnwendungssoftwareSy-SW SystemsoftwareHW Hardware

Schlussbemerkungen

- Demonstration der Grenzen des »Verfallsdatums«
 - keine Veröffentlichung der Software geplant
 - Programmieraufwand inkl. Reverse engineering
 - ca. 8 Stunden
- Nutzung kann schädlich sein
 - Streusand-Galerie
 - Bilder, die längst verschwunden sein sollten, existieren nun erst recht im Netz

01.02.2011 08:25:36	4d4d75d742863ab9656f3d5f76dff858	a7385c51a13dd53030ec2f18c7fcb689ad4094b06ftb90c601c3abac722f1f5c	#!/bin/bash
31.01.2011 20:24:00	ab897fbdedfa502b2d839b6a56100887	cce65472dx62346647ct5c2549599c2f116707176bcb7n5a5dc2ad1u99e1d4628	
31.01.2011 20:23:12	ab897fbdedfa502b2d839b6a56100887	17150b67h6188se11358h5d8b7d6be438394213eb2a5e582703d8ee733c198e1	
31.01.2011 20:21:08	ab897fbdedfa502b2d839b6a56100887	2b4c6711793140ea5fa88c27f61354034f69dbdbaaae82f6c88490fcd019bd09	8-pirel
27.01.2011 18:29:03	e6f207509afa3908da116ce61a757695	fb1c038c912c46c41181c8cb32b39e396abacdb0abf1d0683b6ca3d12ee386ba	8-pire!

- Reine Softwarelösungen werden das Problem niemals lösen
 - Digital Rights Management war und wird nicht der Retter der Musik- und Filmindustrie sein.
 - Das digitale Verfallsdatum wird nicht dazu beitragen, die informationelle Selbstbestimmung der Bürger im Netz zu stärken.

Prof. Dr. Hannes Federrath Lehrstuhl Management der Informationssicherheit Universität Regensburg D-93040 Regensburg

E-Mail: hannes.federrath@wiwi.uni-regensburg.de WWW: http://www-sec.uni-regensburg.de

Phone +49-941-943-2870 Telefax +49-941-943-2888

