Privacy through anonymous communications?

Hannes Federrath

University of Regensburg
Management of Information security
http://www-sec.uni-regensburg.de

Invited talk, European Conference on Computer Network Defense (EC2ND)
28 October 2010, Berlin, Germany
Protection Goals

Subject of communication
WHAT?

<table>
<thead>
<tr>
<th>Confidentiality</th>
<th>Anonymity</th>
<th>Unobservability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents</td>
<td>Sender</td>
<td>Location</td>
</tr>
<tr>
<td></td>
<td>Recipient</td>
<td></td>
</tr>
</tbody>
</table>

Circumstances of comm.
WHEN?, WHERE?, WHO?

<table>
<thead>
<tr>
<th>Integrity</th>
<th>Accountability</th>
<th>Legal Enforcement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents</td>
<td>Sender</td>
<td>Billing</td>
</tr>
<tr>
<td></td>
<td>Recipient</td>
<td></td>
</tr>
</tbody>
</table>

Availability
Protection Goals

Subject of communication

WHAT?

- Confidentiality
- Contents

Circumstances of comm.

WHEN?, **WHERE?**, **WHO?**

- Anonymity
- Unobservability
- Sender
- Location
- Recipient

- Protection goals — confidentiality
 - Protection of the **identity of a user** while using a service
 - Anonymity in counseling services
 - Protection of the **communication relations** of users
 - Users may know identity of each other
Anonymity and unobservability

Everybody can be the originator of an «event» with an equal likelihood.
Protection Goals

<table>
<thead>
<tr>
<th>Subject of communication</th>
<th>Circumstances of comm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHAT?</td>
<td>WHEN?, WHERE?, WHO?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Confidentiality</th>
<th>Anonymity Unobservability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents</td>
<td>Sender</td>
</tr>
<tr>
<td></td>
<td>Location</td>
</tr>
<tr>
<td></td>
<td>Recipient</td>
</tr>
</tbody>
</table>

- Protection goals — confidentiality
 - Protection of the **identity of a user while using a service**
 - Anonymity in counseling services
 - Protection of the **communication relations of users**
 - Users may know identity of each other
Why encryption is not enough

Attorney Miller, specialized in mergers

Observation of communication relations may give information about contents
Why encryption is not enough

Observation of communication relations may give information about contents

User

https://www.sex.com

Web Server
Protection Goals

Subject of communication
WHAT?

Circumstances of comm.
WHEN?, WHERE?, WHO?

Confidentiality

- Contents

Anonymity
Unobservability

- Sender
- Location
- Recipient

- Outsiders
 - ... tapping the «line»
 - ... doing traffic analysis

- Insiders
 - Network operator (or corrupt staff) reading e.g. billing data
 - Governmental organizations asking for log files
Building blocks of Privacy Enhancing Technologies

- Encryption

- Hiding communication relations
 - Against weak outsiders
 - Proxies
 - Against insiders
 - Broadcast
 - Blind message service
 - DC network
 - MIX network

- Hiding transactions
 - Pseudonyms
 - Credentials (link properties to pseudonyms)
Protection ideas (selection)

- Against weak outsider attacks
 - Encryption — does not protect from traffic analysis
 - Use a mediator:
 - PROXY

- Users need to trust the proxy
- proxy knows all communication relations
Protection ideas (selection)

• Against insider attacks
 – Goal:
 • Users need not trust the operator of anonymizing service
 – Ideas:
 • Use more than one «mediator» from different operators
 • At least one operator must be trustworthy
 • Have a group of users (anonymity set)
 – Examples:
 • Broadcast
 • Blind message service
 • DC network
 • MIX network
Broadcast

• The past...
 - Reading newspapers
 - Radio via antenna
 - TV via broadcasting channels (cable, antenna)

• Broadcast and implicit addressing (for point-to-point communication)
 - Protects the recipient
 - *All recipients* get all (encrypted) messages
 - *Locally* select content from broadcast channel
 - Hides who is interested in what
Anonymity in the Internet

Broadcast

- Present
 - Video on Demand
 - Internet radio
 - News online
 - No privacy!
 - No protection?

- The past ... (broadcast)
 - Reading newspapers
 - Radio via antenna
 - TV via broadcasting channels (cable, antenna)

- Broadcast and implicit addressing (for point-to-point communication)
 - Protects the *recipient*
 - *All recipients* get all (encrypted) messages
 - *Locally* select content from broadcast channel
 - Hides who is interested in what
Broadcast

- Present
 - Video on Demand
 - Internet radio
 - News online
 - No privacy!
 - No protection?

- The past ... (broadcast)
 - Reading newspapers
 - Radio via antenna
 - TV via broadcasting channels (cable, antenna)

- The message is
 Keep the broadcast channels alive!
Blind-Message-Service (Cooper, Birman, 1995): Query

Client queries for D[2]:

Index = 1234

Set vector = 0100
Choose randomly request(S1) = 1011
Choose randomly request(S2) = 0110
Calculate request(S3) = 1001

- Protection goal:
 - Databases gain no information which entry the client is interested in
- Replicated databases of different operators
Blind-Message-Service (Cooper, Birman, 1995): Answer

Client queries for D[2]:

Index = 1234

Set vector = 0100
Choose randomly request(S1) = 1011
Choose randomly request(S2) = 0110
Calculate (xor) request(S3) = 1001

Answers from
S1: 0010110
S2: 1001000
S3: 0111000

Xor equals D[2]: 1100110

Link encryption between client and databases
DC network (Chaum, 1988)

- **Everybody**
 1. Flip a coin with each other
 2. Calculate xor of the two bits
 3. If paid xor a 1 (negate the result of step 2)
 4. Tell your result

- **Together**
 1. Calculate xor of the three (local) results
 2. If global result is Zero an external person has paid
Mixes (Chaum, 1981)

- Perfect unlinkability of sender and recipient

Mixes protect from outsiders and mix operators.
Mixes (Chaum, 1981)

- **Basic idea:**
 - Sample messages in a batch, change their coding and forward them all at the same point of time but in a different order. All messages have the same length.
 - Use more than one Mix, operated by different operators.
 - At least one Mix should not be corrupt.

- **Then:**
 - Perfect unlinkability of sender and recipient
Timeline of development

<table>
<thead>
<tr>
<th>Year</th>
<th>Idea / PET system</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978</td>
<td>Public-key encryption</td>
</tr>
<tr>
<td>1981</td>
<td>MIX, Pseudonyms</td>
</tr>
<tr>
<td>1983</td>
<td>Blind signature schemes</td>
</tr>
<tr>
<td>1985</td>
<td>Credentials</td>
</tr>
<tr>
<td>1988</td>
<td>DC network</td>
</tr>
<tr>
<td>1990</td>
<td>Privacy preserving value exchange</td>
</tr>
<tr>
<td>1991</td>
<td>ISDN-Mixes</td>
</tr>
<tr>
<td>1995</td>
<td>Blind message service</td>
</tr>
<tr>
<td>1995</td>
<td>Mixmaster</td>
</tr>
<tr>
<td>1996</td>
<td>MIXes in mobile communications</td>
</tr>
<tr>
<td>1996</td>
<td>Onion Routing</td>
</tr>
<tr>
<td>1997</td>
<td>Crowds Anonymizer</td>
</tr>
<tr>
<td>1998</td>
<td>Stop-and-Go (SG) Mixes introduced</td>
</tr>
<tr>
<td>1999</td>
<td>Zeroknowledge Freedom Anonymizer (service meanwhile closed)</td>
</tr>
<tr>
<td>2000</td>
<td>AN.ON/JAP Anonymizer</td>
</tr>
<tr>
<td>2004</td>
<td>TOR</td>
</tr>
</tbody>
</table>
AN.ON/JAP anonymizer

- **Technical background**
 - MIX based unobservable transport system
 - Should withstand strong (big brother) attacks

- **Information service (impossible to operate a perfect Anon system)**
 - Current level of protection (Anonymity level)
 - Trade-off between performance and protection should be decided by the user

- **Open source project**
 - Client software: Java (platform independent)
 - Server software: C/C++ (Linux)

- **Technical and jurisdictional knowledge to serve legal issues**
AN.ON/JAP anonymizer

• JAP acts as a local proxy on the local machine
AN.ON/JAP anonymizer

For free at www.anon-line.de

First test version has been launched in October 2000

Full service has been running since February 2001
AN.ON/JAP anonymizer

Mix based solution for anonymous Internet access

OpenSource

>10,000 users

>6 TByte per month

www.anon-online.de

Public survey (Spiekermann 2003)

- **Sample size:**
 - 1800 users of the JAP anonymizer

[Survey Questions]

- **Paying for Anonymity?**

Other people make their livings from your answers ...

How much would you be willing to pay per month for Anonymity?

- Nothing
- $2.50
- $5
- $7.50
- $10
- $12.50
- $15

How important would an anonymous means of payment be for you?

- It’s very important to me.
- I don’t care.
- Comfort is more important. Therefore I’d even register personally with the JAP-service.

Which rate of payment would you prefer?

- Monthly flat rate
- Pay per volume
- Pay per connection time
- A combination of the above, e.g. always paying the lowest charge.
- Other: []

Public survey

- Willingness to pay for anonymity
 - \(\approx 40\%\) absolutely not
 - \(\approx 50\%\) monthly service fee of about €2.5 ... €5
 - \(\approx 10\%\) more than €5 per month

- Willingness is independent of the heaviness of usage

- Heaviness of usage
 - \(\approx 73\%\) heavy users (use the system at least daily)
 - \(\approx 10\%\) use it at least twice the week
 - \(\approx 17\%\) sporadic (less than twice the week)
Public survey

- Reasons for using an anonymizing service
 - ≈ 31% Free speech
 - ≈ 54% protect from secret services
 - ≈ 85% protect from profiling
 - ≈ 64% protect against observation by my ISP

- Do you use it for private or business?
 - ≈ 2% private only
 - ≈ 59% mainly for private things
 - ≈ 30% mainly for business things
 - ≈ 9% business only

- Why do you use the JAP system?
 - ≈ 76% free of charge
 - ≈ 56% secure against the operator
 - ≈ 51% easy to use
Anonymized content

- 150 requests randomly picked from millions of requests of June 2005

- Entertainment (44%)
 - 33% erotic, pornography
 - 8% private homepages, cinema, amusement
 - 3% games

- Services (18%)

- Misc (18%)

- Companies (8%)

- Mail (8%)

- News (3%)

- Health (1%)
Regions of users

- Incoming IP addresses have been classified into regions from May-June 2005

![Map showing regions of users]

- 60% Europe
- 27% Asia
- 12% America
- 1% Rest of the world
Regions of users

- Dayline of May 27, 2005
Regions of users

- Dayline of Aug 1, 2005

- Germany
- Saudi Arabia
- United States
Censor-free Internet access

JAPs act as a forwarder node for the Anonymizer

Blocking by government
Anonymity in the Internet

Censor-free Internet access

JAP users can share their bandwidth with blocked JAP users.

Requests are anonymized through the Mix network.

Forwarders gain no information about contents of forwarded requests.
Censor-free Internet access

Blocking by government

Web request or send e-mail

Provide forwarder information after passing a Turing test
Censor-free Internet access

InfoService is sending the IP number of one forwarder after passing a Turing test.
Misuse

- JAP project
 - Avg. 4-5 inquiries per month by law enforcement agencies and private persons
Misuse

- **JAP project**
 - Avg. 4-5 inquiries per month by law enforcement agencies and private persons
 - Between 3 and 6 Terabytes per month of anonymized data

- **Typical inquiry**
 - Date and time of access, IP address anonymizing service
 - Inquiry: Identification request (name, address) for user behind that IP address
 - **Anonymizer is misunderstood as an Internet Service Provider (ISP)**
Misuse

- Typical crimes committed by use of JAP (suspicion)
 - credit card fraud,
 - computer fraud,
 - sending malicious code to vulnerable web servers,
 - insult,
 - defamation,
 - death thread,
 - access to child pornography

- Observation
 - While the traffic anonymized by the system increased over the time the number of inquiries did not
Conclusions

- **Economical**
 - There is a market for identity protection.
 - Users are willing to pay for it.

- **Technical**
 - Anonymity on the network is necessary as a basic technology for providing freedom and democracy.
 - Prototypes exist at least for Internet/Web

Prof. Dr. Hannes Federrath
Lehrstuhl Management der Informationssicherheit
Universität Regensburg
D-93040 Regensburg

E-Mail: hannes.federrath@wiwi.uni-regensburg.de
WWW: http://www-sec.uni-regensburg.de
Phone +49-941-943-2870
Telefax +49-941-943-2888