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Abstract—In this paper we present Laribus, a peer-to-peer
network designed to detect local man-in-the-middle attacks
against SSL/TLS. With Laribus clients can validate the authentic-
ity of a certificate presented to them by retrieving it from different
vantage points on the network. Unlike previous solutions, clients
do not have to trust a central notary service, nor do they
have to rely on the cooperation of website owners. The Laribus
network is based on a Social Network graph, which allows
users to form Notary Groups that improve both privacy and
availability. It integrates several well-known techniques, such as
secret sharing, ring signatures, layered encryption, range queries
and a Distributed Hash Table (DHT), to achieve privacy-aware
queries, scalability and decentralization. We present the design
and core components of Laribus, discuss its security properties
and also provide results from a simulation-based feasibility study.
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I. INTRODUCTION

The SSL/TLS protocol suite provides basic security mech-
anisms such as confidentiality, data integrity and especially
authentication [1], [2]. There have been various attempts to
attack these protocols, i. e., to eavesdrop on a connection.
Some attacks (e. g., the BEAST attack [3] published by Rizzo
and Duong in 2011) exploit security flaws in the protocols,
implementation errors or weaknesses in the construction of the
cryptographic primitives used (for a comprehensive overview,
cf. [4]). The second type, which we are interested in, attacks
weaknesses in the authentication infrastructure.

SSL and TLS rely on a X.509 PKI [5] for the purpose
of authenticating a remote entity’s key. This protects clients
from disclosing data to adversaries that impersonate a desig-
nated destination. Authentication is delegated to Certification
Authorities (CAs) that issue certificates by cryptographically
signing the public key of website owners, guaranteeing the
authenticity of the association 〈public key, website〉 or, in
some cases, 〈public key, website, organization〉.

In a 2010 study, the Electronic Frontier Foundation found
that browsers from Microsoft and Mozilla are (in-)directly
trusting more than 650 CAs [6]. Unfortunately, the X.509
model allows any CA to certify any domain [7]. It only
takes a single CA to misbehave (by being hacked, tricked,
bribed or legally forced) to generate a seemingly valid fake
certificate. Having obtained a fake certificate an adversary
can mount a man-in-the-middle (MitM) attack impersonating
any website of his choice. The MitM attack goes undetected
because the fake certificate contains a genuine signature and

Fig. 1. An attacker presents a fake certificate during a MitM attack

thus appears legitimate. MitM attacks typically affect only
users in a confined part of the Internet (cf. Fig. 1). The severity
of this risk is demonstrated by security incidents involving
the two CAs Comodo and DigiNotar. The attackers created
fake certificates for high-profile sites (among them Google and
Paypal) to intercept the SSL traffic of Internet users in Iran
[8]. The currently used approach of solely relying on CAs for
authenticating remote servers is fragile and insecure.

Previous proposals aim to fix the CA-based authentication
approach either by relying on other hierarchical structures
(e. g., the DNS tree) or by introducing notary servers that
validate certificates on the user’s behalf. Both approaches are
subject to considerable limitations (cf. Sect. II). In contrast,
with Laribus (referring to guardian deities in ancient Roman
religion), we propose that web clients should collaborate to
validate certificates in a distributed manner. Our contribution
consists of integrating well-known techniques to organize the
clients in a fully distributed peer-to-peer (P2P) network
that meets security, privacy and availability expectations of
web clients. Laribus provides users with the ability to model
trust relationships that reflect their social relationships,
i. e., users can choose to trust their friends, and not unknown
organizations, with certificate validation. The P2P architec-
ture of Laribus improves scalability and provides blocking-
resistance. Privacy-preserving query techniques protect the
user’s surfing behavior. A distributed storage mechanism offers
resilience to client churn and increased performance via
caching.

The rest of this paper is structured as follows. In Sect. II
we review related work and motivate our design choices in
Sect. III. We outline the architecture of Laribus in Sect. IV and
focus on the details of the cryptographic mechanisms involved
in Sect. V. We present results of an initial feasibility study in
Sect. VI and discuss limitations in Sect. VII. We conclude in
Sect. VIII.
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II. RELATED WORK

The problems with SSL and the CA trust model have
been known for years, and various proposals have appeared
in the literature to replace, amend or complement this model.
Among those proposals, we have identified three common
approaches: In Sect. II-A we describe those advocating to
store certificate-related data in the Domain Name System. The
proposals reviewed in Sect. II-B employ fixed notaries that
certify and compare seen certificates. Finally, in Sect. II-C
we describe methods that aim to validate certificates without
having to trust third parties.

A. Utilizing the Domain Name System (DNS)

The approaches falling in this category aim to fix the
broken CA architecture, but merely advocate another alterna-
tive hierarchy: DANE [9] and CAA [10] are IETF standards
that propose to utilize the DNS infrastructure to validate
certificates. Both designs standardize DNS resource records
which can be used to either specify the SSL certificate of a
website or to indicate the CAs that are supposed to issue its
certificates.

The idea is to exploit an already existing decentralized
hierarchy, as created by the DNS namespace, to authenticate
website certificates. The security of these approaches depends
on the integrity of the data supplied via DNS, i. e., DNSSEC
[11] is a mandatory prerequisite in DANE. Indeed, as Verisign
shows in [12], this solution would greatly reduce the attack
surface for a MitM attack, since an adversary would have
to compromise both a CA and the respective authoritative
DNS server. However, leveraging DNS has some limitations
in practice: Firstly, only few DNS servers make use of
DNSSEC so far and its widespread deployment has proven to
be challenging [13]. Moreover, the adoption of this approach
can only be enforced by server administrators, not clients.
Finally, parts of the DNS hierarchy are connected to the X.509
PKI infrastructure: A prominent example is Verisign itself,
which maintains a Certificate Authority providing hundreds of
thousands of SSL certificates [14]. At the same time Verisign
acts as DNS registry for several top-level domains, among
them .com and .net, which makes it a particularly weak
spot.

B. Notary Approach

Perspectives [15] and Convergence [16] employ a set
of network servers with the purpose of periodically fetching
SSL/TLS certificates from Internet hosts. Users connect to
one or more of the notary servers and retrieve from them the
certificates they see at their vantage point. An attacker close
to the client could then be easily detected by comparing the
certificates presented to the notaries with the certificate the
server presented to the client.

The notary model is based on the assumption that an
attacker cannot interfere with both the connection of the users
as well as the connection of (all the) queried network notaries.
Unfortunately, notaries are full-blown dedicated servers which
have to be maintained to be always up and running by their
operators. As a result, there is only a limited number of them.
However, a small fixed list of notaries for each user also means
a greater chance for adversaries to attack users along with

these notaries, effectively rendering their lists poisoned and
ineffective. Moreover, users must put considerable trust into
notaries: from a security perspective, users have to trust them
not to lie (or collaborate with an adversary). From a privacy
perspective, notaries have to be trusted to operate responsibly.
Without any additional means, they learn all of a user’s visited
SSL domains. Privacy can be increased by forwarding queries
to notaries via the Tor network [17], which requires additional
software on clients, though.

Finally, the recently published Sovereign Keys [18] pro-
poses to maintain a verifiable append-only data structure,
which contains the history of all SSL-enabled domains. Server
operators are supposed to push their authentication data (newly
deployed certificates as well as blacklisted old certificates)
to one of 20 redundant Timeline Servers. Clients interact
with them to validate previously unseen certificates. Indeed,
a read-only redundant and updated data structure could be the
definitive answer to the trust problems in SSL, since attackers
would have to publicly insert fake certificates into the data
structure to be successful. However, this approach requires the
cooperation of web server administrators.

C. End-to-End Schemes

Some approaches try to establish secure connections with-
out a set of fixed, potentially untrusted third parties.

MonkeySphere [19] builds upon the PGP Web of Trust
(WoT) concepts of a network of people who trust other people:
Users who never met before can safely authenticate their
identities due to the presence of a trust path in the network
between them, established by friends who trust friends, etc.
Whenever the MonkeySphere daemon encounters a self-signed
or invalid certificate, it searches public key servers for a PGP
key associated with that website’s name. The certificate is
trusted only if the daemon can construct a trust path from the
user’s key to the server’s key. This approach could effectively
abolish the need of external third parties and allow users
to trust self-signed certificates, also providing a theoretically
sound way of trusting remote certificates and detecting at-
tackers. However, server administrators are required to sign
certificates themselves and be connected into PGP’s Web of
Trust. Given the comparatively small user base of PGP/GPG
keys, in many cases there will be no trust path between a user
and a server.

Advocates of the TOFU method, on the other hand, simply
reject the idea of having a third party issue certificates that
have to be renewed periodically. Instead users are supposed
to trust the certificate seen during the initial connection to
a remote host (cf. the model used with SSH). Certificates
should never change and never be renewed, unless exceptional
circumstances occur. DVCert [20] expands this notion by
allowing the renewal of a certificate whenever a user had
already established a user name and password association with
the end website.

Once users have connected to a website, indeed these
proposals offer a great form of protection, which requires no
extensive setup in comparison to other methods. On the other
hand, the very first connection to a website cannot be protected
with these models, and DVCert requires both existing users
with website credentials and adoption by server administrators.
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III. BUILDING LARIBUS UPON PREVIOUS WORK

Laribus is a combination and extension of techniques
selected from the current state of the art (cf. Sect. II). It
does not aim to replace the existing PKI infrastructure, but is
supposed to provide an additional and independent layer that
provides fail-safe functionality for the authentication function
of SSL and TLS.

One of our central design goals is to achieve a client-side
solution that does not rely on the collaboration of website
operators or other external organizations for the purpose
of detecting fake certificates. Therefore, Laribus is not based
on DNS approaches that require additional resource records
and whose security depends on the deployment of DNSSEC.
Changes to DNS propagate very slowly and may never find
widespread adoption.

The design of Laribus is inspired by the concept of
notaries. However, another of our design goals is to provide
a scalable fully-distributed solution that does not require
fixed entities. Therefore, we do not want to be constrained to
a set of dedicated notary servers. Running a dedicated notary
server with adequate security and availability requires a high
level of technical expertise and considerable resources – but
it offers few benefits for its operator. In contrast, in Laribus
each client acts as a low-availability component of a notary in
Laribus.

Another design goal consists of providing users with intu-
itive means to assess the trustworthiness of the result of the
certificate validation. MonkeySphere’s approach, which relies
on the Web of Trust infrastructure of PGP, seems promising,
but relies on the cooperation of website operators, which
conflicts with our client-side approach. Moreover, Monkey-
Sphere requires its users to adopt PGP, which has not seen
widespread adoption due to its intrinsic complexity and the
resulting usability issues. Instead, in Laribus users can point
out their friends based on real-world social relationships in
order to define straightforward trust relations. These relations
are used to find trustworthy clients for certificate validation.

IV. THE LARIBUS PROPOSAL

In this section we will present an overview of the ar-
chitecture of Laribus and the interactions of the involved
components. We will start out with a naïve approach for client-
based certificate validation in order to explain the issues that
must be overcome. After that we will explain how the design
of Laribus addresses these challenges.

A. Shortcomings of a Naïve Approach

Given the initial scenario in Fig. 1, Alice could ask one
of the unaffected users, e. g., Carlos, to retrieve the certificate
for the server she wants to connect to (Bob). If Alice receives
different certificates from Carlos and Bob, she can detect the
MitM attack.

This naïve approach, however, has several shortcomings.
First of all, it does not meet users’ security expectations.
Alice wants to be sure that Carlos is neither cooperating with
Mallory and therefore not telling her the truth (Problem 1:
intentionally false testimonies), nor that Carlos is unknowingly
also affected by Mallory’s attack (Problem 2: unintentionally
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Fig. 2. Laribus consists of independent layers: a Social Network (A), Notary
Groups (B) and a Distributed Hash Table for storage (C)

false testimonies). Alice can solve the first problem by asking
only friends she trusts to validate certificates. The second
problem can be solved by asking users that are dispersed
throughout the world, e. g., friends living in different countries.

Secondly, the naïve approach does not meet users’ privacy
expectations. If Alice asks her friends to retrieve certificates on
her behalf, her friends will know which servers she connects
to. While it is a reasonable assumption that her friends will
honestly answer requests for certificates, they must be consid-
ered to be curious; spying on an acquaintance may be more
attractive than snooping on a stranger. Security and privacy
seem to be conflicting goals in this respect. Solutions for
this dilemma do however exist: Alice could ask a client she
trusts, but she doesn’t know personally, e. g., a client run by
a university. Alternatively, she could use a suitable privacy-
enhancing technique to hide her identity, e. g., Tor [17].

Thirdly, the naïve approach does not meet users’ availabil-
ity expectations. Alice cannot assume that a friend is online
every time she wants to validate a certificate. Typically, Alice
will also not be willing to wait until a friend comes online
again. This availability issue can either be resolved by caching
recently obtained validation results or by resorting to delegate
certificate validation to less trustworthy clients.

Finally, certificate validation must be scalable. Asking
one’s friends to validate certificates scales well under three
assumptions. Firstly, users that consume validation services,
i. e., requesting other clients to perform certificate validation
on their behalf, do also offer validation services to others,
i. e., there is no free-riding. Secondly, friends trust each other
mutually, i. e., they are willing to consume and offer validation
services among themselves. Thirdly, the available resources
offered by a group of friends are sufficient to handle the ag-
gregate query volume issued by all of its members. However, in
reality it is difficult to force users to honor these assumptions.
Therefore, a practical system should be able to cope with
unbalanced trust relationships as well as uneven resources and
loads.

B. Layered Network Structure

Laribus is a decentralized, distributed peer-to-peer system
comprised of clients that collaborate for certificate validation.
Each client offers validation on behalf of others and each client
can request validation by other clients.

The Laribus P2P network is structured into multiple layers
of abstraction (cf. Fig. 2). Clients are requested to explicitly

3



point out their friends from the real world, to limit the influence
of adversaries. These social relationships are captured in the
Social Network layer, a directed graph that reflects the
friendship relations expressed by the clients. The set of close
friends of a user (also referred to as his clique), makes up his
Trusted Core in Laribus. The resulting friendship graph is
typically not fully-connected. In fact, some parts of the graph
may be isolated from the rest, e. g., in case of cliques that do
not point out any friends apart from members of their trusted
core. We assume that adversaries will be unable to enter the
trusted core, because this typically involves establishing a close
social relationship with users in the real world.

Apart from pointing out their friends, clients organize
themselves into Notary Groups. Group memberships are re-
flected in the Notary Group layer. Clients within a group
collaboratively act as a notary. The members of a Notary Group
are not supposed to be fully congruent with the set of clients
within a Trusted Core.

Finally, clients are expected to contribute resources for dis-
tributed storage of validation data. The storage layer consists
of a global Distributed Hash Table (DHT) based on Kademlia
[21], in which Laribus stores all information regarding group
memberships and trust relationships. Apart from providing
decentralized storage this layer serves as a cache to provide
cheap access to the results obtained from previous certificate
validations. Data stored in the DHT is cryptographically signed
(cf. Sect. V-C).

C. Interactions During Certificate Validation

Figure 3 extends the initial scenario by the components
of Laribus. Alice connects to Bob’s HTTPS website (Step A
in Fig. 3). We assume that Alice is subject to a MitM attack
perpetrated by Mallory. Other Laribus users, such as members
of Notary Groups 1, 2, and 3 are supposed to be unaffected by
the MitM attack. Formally, Alice tries to connect to a server
SRV and is presented with a fake certificate certM . Some
unaffected clients are able to fetch the authentic certificate
certB . In the following we will only briefly sketch the relevant
interactions. For conciseness we will defer the treatment of the
involved security and privacy techniques to Sects. IV-E and
IV-G.

The straightforward way to validate certificates in Laribus
is via the Direct Queries technique. A requestor, Alice, sends
a Direct Query to a Notary Group of her choice (Step B in
Fig. 3). She may choose a random group for this purpose, or
a group containing one of her friends, asking members of the
selected Notary Group to retrieve the certificate of SRV from
their respective vantage points. The Notary Group exchanges
the obtained certificates in order to reach a consensus about the
certificate of SRV by means of a majority vote: The winning
certificate is signed by the group’s Notary Signature and
returned to Alice (not shown). Alice validates the certificate
presented to her by Bob by comparing it with the result
obtained from the Notary Group.

Issuing Direct Queries for every certificate validation is
inefficient. An alternative way for a client to validate certifi-
cates consists of retrieving certificates that have been obtained
by other clients via Direct Queries with the DHT Lookup
technique. Every time a Notary Group obtains a consensus

Fig. 3. Components of Laribus and their interactions

about a server’s certificate, it signs and stores it in the DHT
(Step F in Fig. 3, further discussed in Sect. V-C). Instead of
issuing a Direct Query, clients can look up both the unknown
certificate’s hash or hostname of SRV in the DHT (Step E).
Summing up, in Laribus a client performs the following steps
to validate a certificate:

1) Alice performs a DHT Lookup to determine whether
certM has been seen previously. If there are entries
for certM , she retrieves them and (depending on
how much she trusts the Notary Groups that stored
the entries into the DHT) validates the certificate
presented to her. If no trusted Notary Group has seen
that particular certificate before, she proceeds with a
Direct Query.

2) Alice contacts a number of Notary Groups with a
Direct Query asking them to report what certificate
server SRV is offering. The queried group’s mem-
bers connect to SRV and get certB , and then sign
with a Notary Signature the fact of having seen certB
at the moment of fetching.

3) The queried Notary Groups store the obtained certifi-
cates in the DHT.

D. User-defined Trust

Laribus bases its security upon the Social Network of its
users. Like in the PGP Web of Trust, users are required to
define social relationships, i. e., determine to which extent they
trust particular users (user trust level).

Alice can assign the following user trust levels to a friend
(Charlie):

Connection: Alice receives and processes Charlie’s mes-
sages. The consequence is that Charlie gets to know Alice’s
IP address and connection times.

Direct query: Alice includes Charlie in the list of users
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she will (try to) send Direct Queries to. As a result, Charlie
may learn about Alice’s (group’s) surfing habits.

Transitive trust: Alice trusts Charlie’s friends to some
extent and would receive and forward their messages. In
consequence, if Charlie authenticates untrustworthy users, both
Alice and Charlie are affected.

Group trust: Alice vouches for Charlie’s inclusion into her
group (however, Charlie cannot join the group until all mem-
bers vote for his inclusion). If Charlie is an attacker, he can
perform denial-of-service attacks against Alice’s group, i. e.,
by not forwarding messages or not participating in creating
Notary Signatures.

E. Security Measures

In order to prevent outsiders from forging messages or
launching impersonation attacks, Laribus clients make use of
public-key cryptography for message authentication and iden-
tification purposes. Before connecting to the Laribus network
for the first time each client ni creates a key pair (Si, Pi, ID i),
where ID i is a self-signed pseudonym, (ID i, Pi) is the public
key and Si is the secret key. ID i does not necessarily have to
reveal the actual identity of a user, but friends should be able
to discover each other based on these pseudonyms.

As Direct Queries are quite expensive, they could be used
to mount denial of service attacks. Therefore, they cannot
be issued anonymously, but have to be authenticated by the
requestor by a digital signature. This allows Notary Groups
to reject queries received from misbehaving clients or to only
accept queries from trusted groups. However, if clients sign
Direct Queries themselves, validation requests can be linked
and tracked back to their pseudonym. We will discuss ways
to overcome this privacy issue in Sect. IV-G1. Moreover, the
certificate records stored within the DHT are also signed by
the Notary Groups in order to guarantee their authenticity.

F. Availability Measures

Given the P2P approach of Laribus, clients cannot be
expected to be online at all times. We address this problem
with three mechanisms: a ring signature scheme, a threshold
signature scheme and a DHT (i. e., the storage layer, cf.
Sect. IV-B).

The ring signature scheme allows Alice to sign a Direct
Query, i. e., to ask another Notary Group to retrieve a certifi-
cate, even if Alice is the only (online) member of her group
(cf. Sect. V-A). With this scheme Alice can prove that she is
a member of her group, without disclosing her identity (cf.
Sect. IV-G).

The purpose of the threshold signature scheme, called
Notary Signatures in this paper (cf. Sect. V-B3), is to allow
groups to sign replies to Direct Queries when only a subset
of the group members is online. We propose to employ an
efficient threshold scheme by Lesueur et al. [22].

The most important availability feature of Laribus is the
DHT. It serves as a global public timeline of the certificates
seen by different groups at different locations. Since the
DHT is distributed among all clients (i. e., independent from
the Social Network and Notary Group structures), it assures

availability of the signed records (i. e., the past validations) of
a Notary Group, even if not a single member of that group is
online (cf. Sect. V-C).

G. Privacy-Preserving Certificate Validation

To meet the users’ privacy expectations, i. e., to prevent
that network nodes will get to know who wants to validate
which certificates, we use well-known and approved techniques
from the privacy-enhancing technologies research community.
Laribus contains privacy-preserving mechanisms for both Di-
rect Queries and DHT Lookups.

1) Preserving Privacy for Direct Queries: If Alice asked
a Notary Group to validate a certificate directly (Step B in
Fig. 3), she could be easily identified by her IP address or by
her signature of the Direct Query. To prevent identification via
signatures, we use ring signatures, i. e., other Notary Groups
can validate that some member of a certain group has signed
a request, but not which member exactly (details follow in
Sect. V-A).

To obfuscate IP addresses, simple solutions like Conver-
gence’s approach to route requests via a low-latency anonymity
system (Tor) could be employed. This approach however
conflicts with our design goal of a decentralized solution and
would be subject to performance problems of such anonymity
systems [23]. To this end, we have designed a scheme that
utilizes the group structure of our network to build anonymity
sets. Before a request is sent to another Notary Group, it is
passed around between the members of Alice’s group (cf. Step
C in Fig. 3). As a result, members of other groups will not
be able to get to know whether a request was initiated by
the requesting host itself, or whether the request was sent on
behalf of another member of the group.

This mechanism offers privacy towards other groups (e. g.,
Group 2 in Fig. 3), but it cannot protect Alice from the
members of her own group. To this end, we use a layered
encryption scheme (LES, cf. [24]). With a LES, Alice chooses
N hops (i. e., friends) to forward her requests (source routing).
LESs hide the routing information required by her friends to
relay a request. Each hop removes one layer of encryption and,
if it is an intermediate node, receives the address of the next
hop (i. e., the next group member), or the destination address
(i. e., the address of the destination group) if it is the final hop.
We propose to use the Sphinx scheme [25] that hides the actual
path length (messages have the same length at each hop) and
is very compact.

2) Preserving Privacy of DHT Lookups: To meet the users’
privacy requirements for DHT Lookups, we use a Range Query
approach [26]: Alice will not request a specific entry using
its key, but instead a set of results by querying for a prefix
that refers to a certain subtree within the DHT. As a result,
an attacker that is able to observe this process will only get
to know that Alice is interested in one of the records of the
subtree, but not in which exactly. The security parameter k
determines the size of the result set, which allows to balance
performance and privacy (cf. [21] and Sect. V-C).

V. LARIBUS CRYPTOGRAPHY MECHANISMS

In this section we will present details about the crypto-
graphic mechanisms of Laribus, especially ring signatures and
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Notary Signatures. We describe how Notary Group key pairs
are generated and (dynamically) shared as well as the structure
and data format of the DHT.

A. Ring Signatures

In Laribus, direct queries have to be signed as Notary
Groups are not required to answer direct queries from any
other group (cf. Sect. IV-E). However, we also want to provide
privacy for Direct Queries (cf. Sect. IV-G1). We use ring
signatures to solve this problem [27], [28]. Ring signatures
allow a single member of a group to sign data (m) on behalf
of all group members. The signer requires only his own private
key (Ss) and the public keys of the other ring members (Pr)
as input to create a signature.

To achieve this given some signing scheme based on trap-
door one-way permutations, such as RSA, the signer constructs
a verification equation Ck,v(g1(x1), g2(x2), . . . , gr(xr)) = z
combining a hash of the data to be signed and the ring’s public
keys functions with trapdoor g1, g2, . . . , gr. The equation is
infeasible to solve for all inputs without inverting any trapdoor
function gi (i. e., not possessing the relative secret key to a
key in the ring), therefore, the signature proves the signer’s
membership in the ring. Only the signer can provide the
solution to the equation as the trapdoor is available only to
him [27].

B. Notary Signatures

When Alice asks a Notary Group to retrieve a certificate
on her behalf (Direct Query), the Notary Group has to sign
its answer (Notary Signature) to guarantee authenticity (cf.
Sect. IV-C). In contrast to the case of ring signatures, a
majority of the Notary Group must participate to perform the
signature. On the other hand, to meet the availability require-
ments of Laribus, we must ensure that Notary Signatures can
be obtained even if some group members are offline. A suitable
solution for this problem is threshold cryptography [29].

With threshold cryptography, a public/private key pair
(P, S) can be jointly generated by n parties. After key gener-
ation, each party knows P and holds a share si of S, but no
party knows S entirely. Signatures can be obtained as long as
a threshold t of shares is available, i. e., t parties participate.
However, t and n must be chosen before the distributed key
generation is initialized, and cannot be changed afterwards.
As a result, using a standard (t−n)-threshold scheme directly
would require to generate a new key pair every time n changes,
i. e., whenever a Notary Group is resized. Furthermore, the
overhead for generating keys increases drastically with the
number of nodes [30] and would thus be impractical for our
case as we assume that groups may consist of up to about 15
(and at least 3) members.

To overcome this problem, we propose to use a dynamic
scheme by Lesueur et al. [22] that allows share merging and
splitting. After an initial key generation process (e. g., to gen-
erate 3 shares) the number of shares can be adjusted to match
the actual number of nodes. Furthermore, its performance is
sufficient for larger group sizes, in fact even much larger than
required for Laribus [22]. In the following, we will explain
details about key generation, dynamic share handling, signing
and Notary Group protection measures against Sybil attackers.

1) Key Generation: To create a key pair for a Notary
Group, we employ Boneh et al.’s efficient method of distributed
RSA key pair generation [30]. The protocol allows a set of
parties to construct an RSA modulus N = pq =

∑
pi
∑

qi
where N is publicly known, and each member Ni only
knows about pi and qi, not about the factorization of N . To
enable sharing of the secret key, they then calculate shares of
d = e−1modϕ(N) for any given RSA encryption exponent e.
Once each of the n group founders has obtained an initial share
ei of the secret d, to which we’ll refer as SG, the following
holds:

∑n
i=1 ei = SG [30]. In Laribus, we parameterize Boneh

et al.’s method as a (3−3)-threshold scheme, i. e., a group will
create three shares and all three shares are required to obtain a
signature. To meet the security and availability requirements,
the number of shares is adjusted with the protocol described
in the next section.

2) Dynamic Share Handling: To dynamically assign shares
to group members, we use the scheme of Lesueur et al. [22].
With this scheme, even though a group is composed of n
members, the number E of shares can vary in respect to the
number t′ ≤ n of online members. The scheme allows to
specify a fixed ratio r of nodes that are required to recover SG

(not a fixed number of nodes as in classical threshold schemes
[22]). To achieve this, shares (ei) are split and merged and may
be replicated on different nodes. Nodes that are assigned the
same share ei compose a sharing group.

The share and merge operations require distributed
sums and subtractions, since split(ei) = (ei1 , ei2) and
merge((ej , ek)) = ejk. To prevent an attacker from recon-
structing SG from old shares, old shares must be rendered
useless after each split and merge operation. To this end, if a
newly created ei is mixed with another share ej , their owners
collaboratively calculate ei := ei − ∆ and ej := ej + ∆,
maintaining

∑E
i=1 ei = SG. ∆ is a chosen random value that

hides the original share (cf. [22]).

The ideal number of shares is E = r×t′, with each sharing
group composed of g = 1

r nodes knowing the same share
[22]. We require clients to participate in merge operation only
if the number of shares E would not fall under a minimum
of Emin = 3. This way, at least three colluding attackers
must be present in a group to recover SG and forge Notary
Signatures. In practice, when only three group members are
online and one member wants to disconnect, the whole group
is shut down. The last three shares are assigned to a third of
the group members and stored in the DHT encryptedly. Nodes
can recover the shares once they re-connect. The Notary Group
ratio is set to r = 1

2 . We will motivate this choice in Sect. VI.

3) Obtaining a Notary Signature: In order to obtain a
Notary Signature for a message D, there must be at least one
member per Sharing Group available and willing to sign D,
i. e., each share ei is required for the signature computation.
Following the signature protocol (cf. Fig. 4), the group signa-
ture of D is DSG [m]. With the equality

DSG [m] = D(
∑E

i=1
ei)[m] =

(
E∏
i=1

Dei [m]

)
[m]

the signature can be calculated collaboratively. One node per
Sharing Group signs D with its share, i. e., calculates si =
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Fig. 4. A Notary Group collaborating for the signature of a message D: one
node per Sharing Group signs D and forwards it along with the calculated
incremental product to the next Sharing Group. Shares are stored encryptedly
in the DHT for offline nodes (empty circles).

TABLE I. THE INCLUSION OF A NODE IN A NOTARY GROUP

row type node timestamp
Inclusion (Pi, IDi) tx︸ ︷︷ ︸

signature
siggrp,inc

Dei [m] and multiplies the result (mod m) with the result from
the previous group (cf. Fig. 4 and [22]).

4) Notary Group Protection Measures: Like any other P2P
system Laribus has to address Sybil Attacks that consist of a
malicious user joining the network with multiple nodes and
fake identities in order to control (large) parts of the network.
We plan to employ Gatekeeper [31] as an admission control
system to counter Sybil Attacks. Gatekeeper uses a ticket
distribution algorithm to detect attackers and is a suitable
choice since, like Laribus, it is based on a social network and
does not require users to have a global view of the network.

When a Notary Group decides about the inclusion of a
new candidate (Pi, ID i), already present members will take
into account their own friendship relations (cf. Sect. IV-D) as
well as Gatekeeper. If the new candidate passes both tests, his
public key is collaboratively signed by the Notary Group and
stored in the DHT to prove its membership. From that moment
on the candidate’s NodeID in the group and DHT is fixed as
siggrp,inc. Table I shows the resulting data structure.

C. Certificate Timeline and Storage Data Format

To improve performance and availability of Laribus, clients
can retrieve certificates signed by other groups, Certificate
Validation Records (CVR), from the DHT instead of issuing a
Direct Query (cf. Sect. IV-C). The DHT stores 〈key → value〉
pairs (cf. Table II), where multiple values (i. e., CVRs) per
key can be returned, e. g., records from different groups or
from different times (certificate timeline). Laribus employs the
Kademlia DHT [21], i. e., keys are truncated to 160 bits (cf.
Table II).

DHT lookups require either a hash of the certificate in
question (certX ) or a hash of the domain name (SRVX , cf.
Sect. IV-C), i. e., the DHT stores two different keys for CVR
lookups (cf. Table II). As mentioned in Sect. IV-G2, to meet
the users’ privacy requirements, clients may request a subtree
of the DHT by submitting only a prefix with 160 − k bits

TABLE II. THE STORED certX VALIDATION RECORDS IN THE DHT

DHT keys
SHA256(certX)[0 · · · 159] =⇒ CVR
SHA256(SRVX)[0 · · · 159] =⇒

TABLE III. CERTIFICATE VALIDATION RECORD STORAGE FORMAT

row type certificate server timestamp
Validation SHA256(certX) SRVX tx︸ ︷︷ ︸

signature
siggrp

(Range Query), i. e., they will receive all CVRs with a key
that starts with the prefix.

The data format of a CVR is shown in Table III. The
row type Validation separates blacklisted from whitelisted
CVRs. The certificate field identifies the certificates by their
SHA256 hash. The row type Server consists of SRV =
〈hostname, port〉 values that identify the server which offered
certX . The timestamp field states when certX was validated.
All CVR fields are signed with the respective Notary Group’s
signature (siggrp).

VI. EVALUATION

The goal of this section is to provide an initial feasibility
study of Laribus. We focus on the computational cost of
cryptographic processes as well as availability aspects.

A. Cryptographic Processes

Laribus makes use of four cryptographic schemes: Dis-
tributed key generation (cf. Sect. V-B1), Notary Signatures
(cf. Sect. V-B3), ring signatures (cf. Sect. V-A) and a LES
(cf. Sect. IV-G1).

The distributed key generation scheme is by far the most
expensive sub-protocol of Laribus. It requires several rounds
of private distributed computation, e. g., to generate an RSA
modulus and for biprimality testing. However, key generation
is performed only once per group, when a new group is
initialized. Given the results of Congos et al. [32], generating
a 2048 bit key that consists of three shares can be expected
to be finished in less than 4 minutes on commodity hardware
and with a total network traffic of less than 25 MByte. As
this process is required only once per group and has no strong
real-time requirements, we expect no practical limitations no
matter if keys are generated in a LAN or via Internet. The
Notary Signature scheme consists of share assignment and
distribution and the signing process itself. The distribution
of shares is not expensive, as it only consists of distributed
sums and subtractions (cf. Sect. V-B2 and [22]). The signing
process requires a single normal signature per sharing group,
as well as a simple multiplication of the resulting signatures
(cf. Sect. V-B3 and [22]). The overhead of both processes
seems negligible. The ring signature scheme [28] is practical
for our scenario as well: It requires only between n and 2n
modular multiplications, where n is the group size and can be
performed locally by a single node (cf. Sect. V-A). The layered
encryption scheme of Laribus, Sphinx (cf. Sect. IV-G1), re-
quires essentially 2r public key operations to create a message
(r is the number of hops) and again 2 public key operations
on each of the r hops (i. e., group members) that forward the
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Fig. 5. Simulations of online availability for normal users

message [25]. It can be used in conjunction with the very
efficient Curve25519 elliptic curve library [33]. Results of a
recent study [34] indicate that the delay introduced by Sphinx
and the relaying of messages should be well below one second.

In conclusion, we do not expect performance problems due
to cryptographic overhead. The only sub-protocol of Laribus
that introduces considerable delay is the distributed key gen-
eration, which takes place only once a group is initialized.

B. Availability Aspects

Whether a group is operational (i. e., can for example
answer direct queries) depends on three factors: the group
size n, the number of nodes necessary to recover the group
secret (threshold t′) and the user behavior (i. e., online and
offline times). We have performed a simulation-based study to
determine adequate values for n and t′ and to assess whether
these values are indeed practical or not. Source code and
configuration files will be made available by the authors on
request.

Since Laribus is not deployed yet, we have to estimate
the user behavior of clients. We model four different types
of users: casual, normal, office and power users. Casual users
connect to the Internet with short session times (on average, ten
minutes per session) during daytime (between 8:00 and 21:00)
and spend 60 minutes on the Internet per day on average.
Normal users are connected 5 hours per day on average,
split into two sessions, one in the morning (around 10:00)
and evening (around 19:00). Office users connect between
9:00 and 10:00 and end their session between 17:00 and
18:00. Power users are either running a server or leaving their
computer online most of the day, with 4 hours of downtime per
day on average. User connection times and session durations
are sampled from a Gaussian distribution (standard deviation
0.5), except for casual and power users, whose connection
times are drawn uniformly from the [8, 21] and [0, 24] hour
ranges, respectively. We assume that Laribus is run as a system
service, i. e., that clients are available whenever a user is
connected to the Internet.

Figures 5, 6 and 7 show the success percentage p for
different group sizes n, thresholds t′ and (mixes of) user
types. The success percentage is defined as the probability that,
whenever at least one node of a Notary Group is online, the
group is operational (i. e., it can perform a Notary Signature),
i. e., at least t′ of its nodes are online.
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Fig. 6. Simulations of online availability for power users
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Fig. 7. The simulation of online availability for mixed users

Figures 5 and 6 present the success ratios of groups with
uniform type of users, respectively normal and power users.
Figure 7 shows results for a more realistic case with mixed
user types, i. e., 80% normal and office users and 20% casual
and power users. As we can see from Fig. 5 and Fig. 6, user
behavior has a strong influence on the success percentage. The
results for normal users (Fig. 5) suggest that for p = 50%
and n = 6, t′ ≈ 0.7n would be a reasonable choice ( t

′

n =
4
6 ≈ 0.7), while the results for power users (Fig. 6) suggest
t′ ≈ 0.9n. The simulation of the most realistic case, the mixed
case (Fig. 7), suggests t′ ≈ 0.5n. As expected, larger groups
can tolerate a bigger fraction of offline nodes for the desired
success percentage of 50%. For instance, a group with n = 14
nodes can tolerate 9 offline nodes in the mixed case, which is
about 64%, while a group with n = 6 nodes can tolerate only
about 3 offline nodes, i. e., about 50% (cf. Fig. 7).

In conclusion, the results suggest that t′ ≈ n
2 is a reason-

able choice, if n ≥ 6, i. e., groups should consist of at least 6
members to be operational in 50% of cases.

VII. LIMITATIONS AND DISCUSSION

In this section we will discuss limitations and challenges
of Laribus. We focus on the attacker model as well as practical
problems, performance tradeoffs and bootstrapping.

Laribus cannot protect against attackers that control large
parts of the Internet. By design, and like any other notary-
based MitM detection approach, Laribus can solely detect local
attacks, i. e., the majority of notaries must not be affected
by an attack and must be able to retrieve valid certificates.
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Attacks that affect a single country (e. g., a repressive regime)
or continent can be detected as long as notaries from different
parts of the world are available. Moreover, strong attackers
may try to block all traffic pertaining to certificate validation.
While this is straightforward given static, centralized notaries,
Laribus is less vulnerable to blocking due to its decentralized
architecture.

A general problem of collaborative distributed certificate
validation is that some hosts and especially Content Distribu-
tion Networks (CDNs) use different valid certificates for the
same host. As a result, a 1:1-comparison of certificates is not
appropriate. However, since the timeline of seen certificates
of Laribus allows to store several certificates for a host (cf.
Sect. V-C), clients can still judge the validity of a certificate
by the number of notaries that have seen the same certificate.

Newly issued or renewed certificates cannot be answered
with DHT Lookups as the timeline will not contain any records
for them. In this case Direct Queries (cf. Sect. IV-C) have to
be issued, i. e., enough notaries that the client trusts have to
be available.

The results of our initial feasibility study suggest that
groups should consist of at least 6 members to be operational in
50% of cases (cf. Sect. VI-B). Composing a group of at least 6
friends should not be a problem in practice. An average 50%
availability of a Notary Group should be practical as well,
especially since the storage and caching mechanisms of the
DHT do allow to access the timeline of the certificates seen
by different groups even if all members of those groups are
offline. Further, previous studies indicate that the popularity of
web hosts follows a power-law distribution [35], i. e., a small
set of popular hosts is responsible for the vast majority of all
requests, while the long tail of remaining hosts is requested
rarely. Thus, we expect that the DHT’s cache hit ratio will
be high; Direct Queries will not be needed in most cases.
Our analysis of the cryptographic processes of Laribus showed
that cryptographic overhead is moderate, except for distributed
key generation which is required only during initialization (cf.
Sect. VI-A).

In conclusion, results for both availability and performance
are quite promising. They indicate that a Laribus deployment
would indeed be practical. However, future work should focus
on an analysis of the cache hit ratio and the resulting user-
perceived latencies. The results would be of particular interest
for the parameterization of Laribus, especially the security
parameter k of the Range Query protection mechanism (cf.
Sect. IV-G2).

To offer adequate performance and availability during the
initial deployment of Laribus, we suggest to bootstrap the
network with a set of dedicated servers operated by different
universities around the world until enough users participate.
In fact, a permanent operation of these servers could be an
option as well as it would allow to combine the benefits of P2P
(especially blocking resistance) and client-server solutions and
thus further increase the attractiveness of Laribus. Furthermore,
snapshots of the timeline (including group signatures) could
be mirrored and made publically available for all users on
the Internet. This resembles the approach of Sovereign Keys
(cf. Sect. II and [18]) and would also help to reduce lookup
latencies as well as the size of the DHT.

VIII. CONCLUSION

In this paper we presented Laribus, a social peer-to-peer
network that addresses the problem of man-in-the-middle
attacks on SSL. Laribus integrates approved techniques from
current state-of-the-art solutions and combines them with well-
known proposals from the privacy enhancing technologies
research community to improve both privacy and availability.

To the best of our knowledge, Laribus is the first fully
distributed solution for the detection of fake SSL certificates.
It does not require cooperation of website owners and is
blocking-resistant due to its decentralized architecture. Further,
clients do not have to trust a central notary service. The Laribus
architecture is fundamentally different from previous solutions
since users can model trust relationships that reflect their social
relationships and may create virtual notaries that consist of
their friends. The resulting groups of friends are utilized both
as anonymity sets and to increase availability.

Our initial evaluation results are promising and suggest that
Laribus is feasible. Future work will focus on an implementa-
tion of its components as well as an in-depth analysis of the
effectiveness of caching and user-perceived latencies in order
to prepare the practical deployment of Laribus.
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