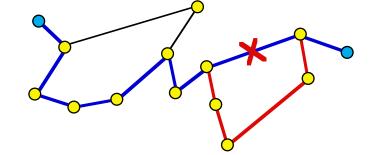


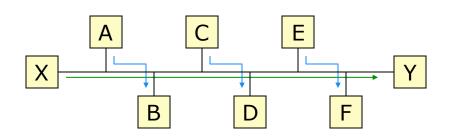
IPv6 – Chance und Risiko für den Datenschutz im Internet

22. November 2011

Prof. Dr. Hannes Federrath

http://svs.informatik.uni-hamburg.de/

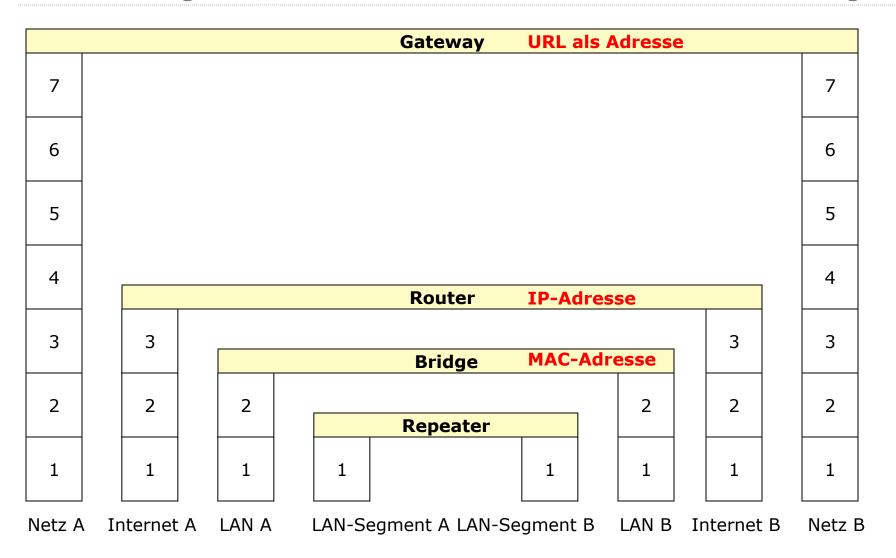



Adressen sind erforderlich für das Routing

- Anforderungen
 - Einfachheit: Router besitzen wenig Speicher und Rechenleistung,
 Wegewahl soll wenig Zeit kosten
 - Stabilität: Router sollen lange ohne Neustart laufen
 - Robustheit: Router sollen alternative Wege bei Ausfall einer

Route finden

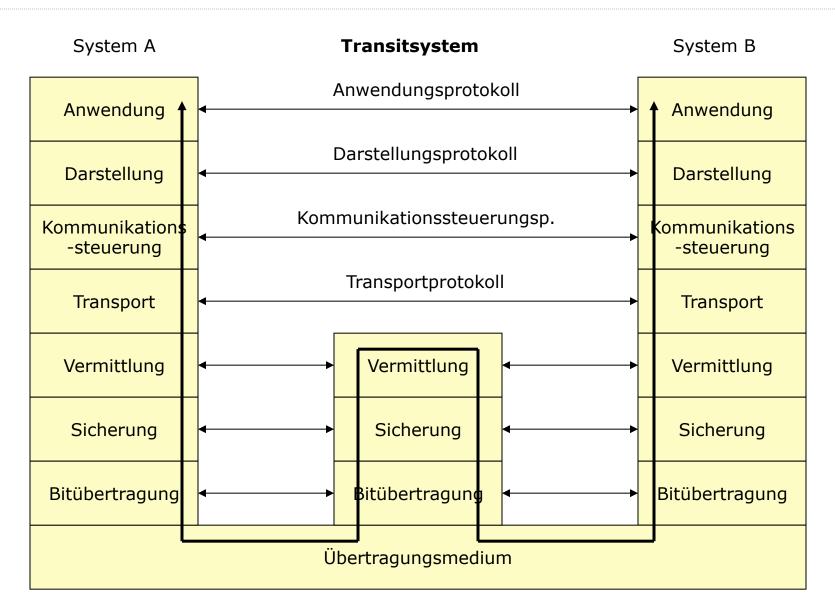
- Fairness
- Optimalität



Optimalität: Wenn A, B, C, D, E, F gemeinsam voll auslasten können, sollten X und Y warten

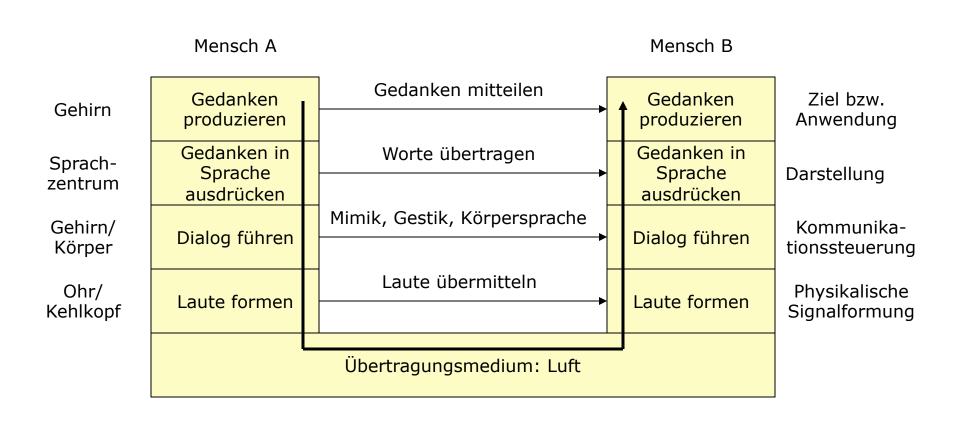
Fairness: X und Y sollten jedoch nicht benachteiligt werden

Bezeichnungen der Funktionseinheiten beim «Internetworking»



OSI-Modell: Aufgaben der 7 Schichten

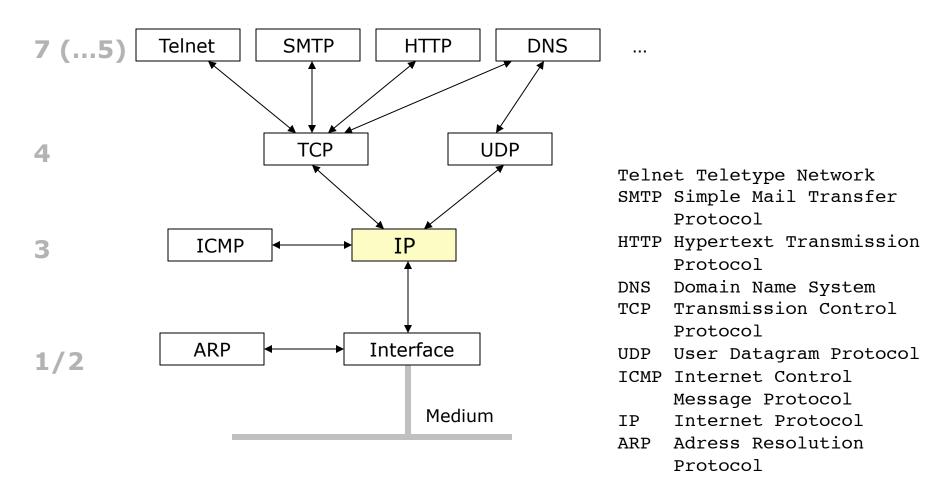
Application Layer	Anwendung	Anwendungsunterstützende Dienste Netzmanagement	
Presentation Layer	Darstellung	Umsetzung von Daten in Standardformate Interpretation dieser gemeinsamen Formate	
Session Layer	Kommunikations -steuerung	Prozess-zu-Prozess-Verbindung Prozesssynchronisation	
Transport Layer	Transport	Logische Ende-zu-Ende-Verbindungen in Abstraktion der technischen Übertragungssysteme	
Network Layer	Vermittlung	Wegbestimmung im Netz: Routing Datenflusskontrolle	
Data Link Layer	Sicherung	Logische Verbindungen mit Datenpaketen Elementare Fehlererkennungsmechanismen	
Physical Layer	Bitübertragung	Nachrichtentechnische Hilfsmittel für die Übertragung von Bits	



Schichten im OSI-Modell

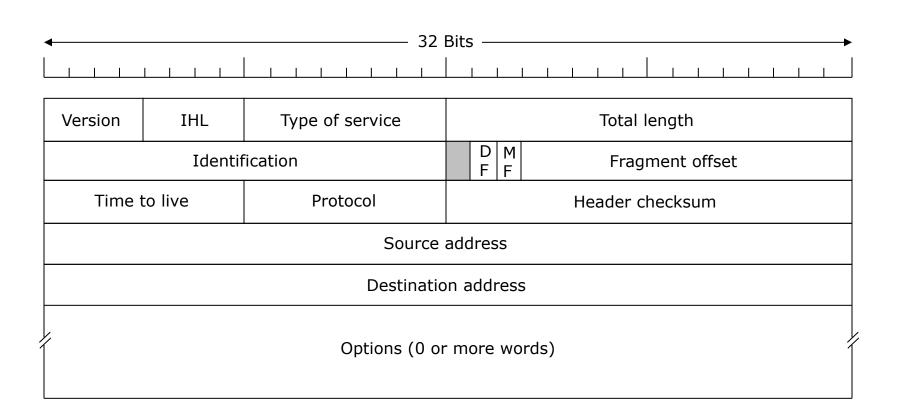
Ebenenmodell der Mensch-zu-Mensch-Kommunikation

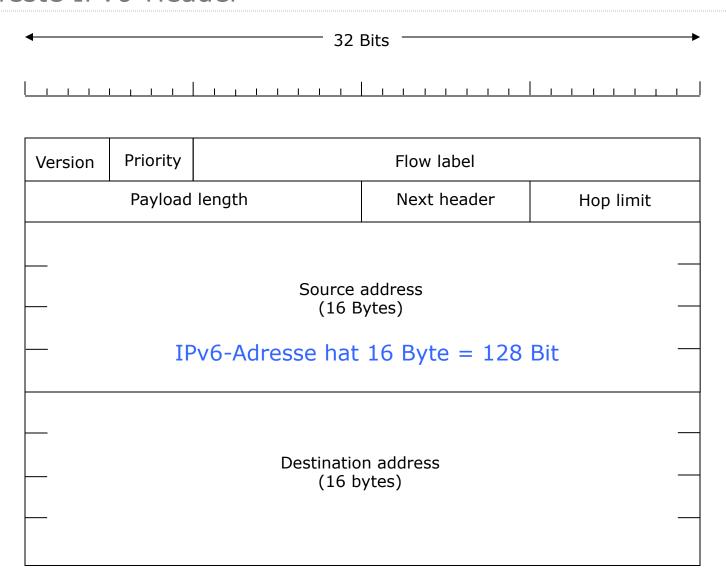
Schichtenmodelle OSI und Internet


7	А	Application Layer	Application Level
6	Р	Presentation Layer	Telnet, FTP, SMTP, DNS, HTTP,
5	S	Session Layer	Transmission Level
4	Т	Transport Layer	TCP, UDP
3	N	Network Layer	Internet Level IP, ICMP
2	DL	Data Link Layer	Network Level
1	PH, PHY	Physical Layer	MAC-Adresse Ethernet,

OSI

Internet


Protokollebenen


Header des IPv4-Protokolls

IPv4-Adresse hat 4 Byte = 32 Bit

Der feste IPv6-Header

Die IPv6-Erweiterungsheader

Erweiterungsheader	Beschreibung	
Optionen für Teilstrecken (Hop-by-Hop)	Verschiedene Informationen für Router	
Routing	Definition einer vollen oder teilweisen Route	
Fragmentierung	Verwaltung von Datengrammfragmenten	
Authentifikation	Echtheitsüberprüfung des Senders	
Verschlüsselung	Vertraulichkeit des Inhalts (Payload)	
Optionen für Ziele	Zusätzliche Informationen für das betreffende Ziel	

IP Version 6

- IPv6
 - Erweiterung des Adressraums
 - 4 Byte-Adressen (IPv4) -> 16-Byte-Adressen (IPv6)
 - bessere Unterstützung der QoS-Anforderungen von Echtzeitanwendungen: Priorisierung von IP-Paketen
 - Streaming
 - Verbesserung der Sicherheit
 - Authentication Header
 - Encapsulated Security Payload

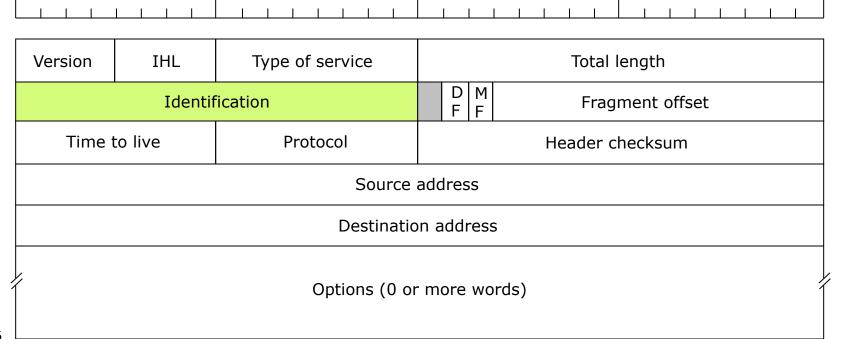
IPSec/IPv6

 IPSec/IPv6 schließt eine Lücke bzgl. Sicherheitsfunktionen auf der Netzwerkschicht

	IPv4	IPv6
Anwendungsschicht	Pretty Good Privacy (PGP), S/MIME, Secure Shell (SSH)	
Transportschicht	Secure Sockets Layer/Transport Layer Security (SSL/TLS)	
Vermittlungsschicht	_	Authentication Header (AH) zur Integritätssicherung von Datagrammen MD 5, SHA-1
		Encapsulated Security Payload (ESP) zur Verschlüsselung von Datagrammen
		DES/CBC
Schichten 1/2	Challenge Handshake Protocol (CHAP, Passwort), Encrypt Control Protocol (ECP), Wireless Equivalent Privacy (WEP)	

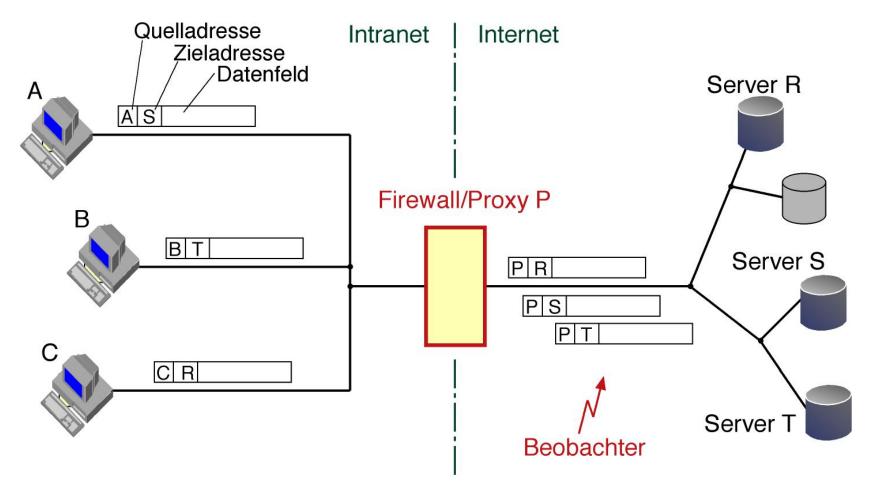
Fakten

- IPv4
 - Adresse hat 32 Bit
 - Adressvorrat ist heute bereits zu klein, um jedem Gerät jederzeit eine eindeutige Kennung (IPv4-Adresse) zuzuteilen
- IPv6
 - Adresse hat 128 Bit
 - Adressvorrat ermöglicht eindeutige Kennung (IPv6-Adresse) aller Geräte
 - Eingebaute Priorisierung kann Netzneutralität gefährden
 - Verwendung der MAC-Adresse (Schicht 2) als Teil der IP-Adresse ermöglicht auch Identifizierung trotz Adreßwechsel
 - Privacy Extensions (RFC 4941): zufällige MAC-Adresse erzeugen und regelmäßig wechseln


Von IPv4 bekannte »Schutzfunktionen«

- Adressersetzung ist weiterhin möglich
 - Network Address Translation (NAT)
 - kann weiterhin unterstützt werden, ist aber meist nicht mehr zwingend erforderlich
 - Verwendung von Proxies ebenfalls weiterhin möglich
 - Beachte: auch bei IPv4 trotz NAT Identifizierbarkeit
- Dynamische Adressvergabe ist weiterhin möglich
 - Sensibilität der ISPs vorausgesetzt, könnten IP-Adressen von DSL-Zugängen weiterhin dynamisch zugeteilt werden
 - Beachte: Eine statische IP-Adresse ist ein Personenpseudonym und unstrittig ein personenbezogenes Datum (und nach einer gewissen Nutzungszeit auch für alle Außenstehenden verkettbar).
 - Eine dynamische IP-Adresse ist lediglich ein personenbezogenes Datum für denjenigen, der die Zuordnungsregel kennt.

Network Address Translation


- Kann man feststellen, wieviele Hosts hinter einem NAT-GW sind?
 - S. Bellovin: A Technique for counting NATed hosts. Proc. 2nd ACM SIGCOMM Workshop on Internetmeasurment 2002. http:// www.cs.columbia.edu/~smb/papers/fnat.pdf
 - Viele Betriebssysteme benutzen das Header-Feld ID als counter:
 »The technique is based on the observation that on many operating systems, the IP header's ID field is a simple counter.«

Proxies und Network Address Translation

Schutz vor Beobachtung im Internet

Chancen durch IPv6 aus Datenschutzsicht

- IPSec ist fester Bestandteil von IPv6
 - ermöglicht leichte Verschlüsselung und Authentifizierung
 - Verwendung von Verschlüsselung ist aber nicht zwingend
- Jedes Gerät könnte mehr als eine Adresse erhalten
 - im besten Fall wäre das ein Transaktionspseudonym
 - Autokonfigurationsfunktion in IPv6 ermöglicht funktionsfähige selbst zugewiesene IP-Adressen
 - Beachte: Durch fremd zugewiesenen Präfix bleibt das Gerät bzw. der User jedoch weitgehend beobachtbar (schwacher Schutz, bestenfalls lokal).
- Verbesserte Multicast-Mechanismen und Mobile IP ermöglichen zumindest theoretischen Schutz vor Lokalisierung und Beobachtung
 - Realisierung eines sehr effizienten Mix-basierten Anonymisierungsverfahrens auf IP-Ebene (Schicht 3 des OSI-Referenzmodells) denkbar

Universität Hamburg Fachbereich Informatik Arbeitsbereich SVS Prof. Dr. Hannes Federrath Vogt-Kölln-Straße 30 D-22527 Hamburg

E-Mail federrath@informatik.uni-hamburg.de

Telefon +49 40 42883 2358

http://svs.informatik.uni-hamburg.de

