

Privacy-Preserving DNS

Analysis of Broadcast, Range Queries and Mixes

Hannes Federrath, Karl-Peter Fuchs, **Dominik Herrmann**, Christopher Piosecny University of Hamburg (Germany)

Agenda

Missing Privacy in DNS

Characteristics of DNS Traffic

DNS Anonymity Service

Range Queries

Privacy Issue: DNS Resolver learns queries of all users

Third-party DNS Resolvers are increasing in popularity

Google, OpenDNS, Comodo, Norton DNS, ...

Advertised benefits:

Objectives for the DNS Anonymity Service

- 1. protect privacy of users
 - hide relationship between users and queries from resolver

- 2. practicable and usable solution
 - very low latency
 - compatibility with existing DNS

Agenda

Missing Privacy in DNS

Characteristics of DNS Traffic

DNS Anonymity Service

Range Queries

1 10	Info		C C C Telephony Les
	St andard St andard	query query query query query query query query query query query query query query query query	A live.mozillamessaging.com response CNAME production.mozillamensame and a A vww.mozilla.org response CNAME www.mozilla-org.gem menile and one A vww.google.de response CNAME www.google.com CAME www.mozilla.org A plus.google.de A plus.google.de A video.google.de A ssl.gstatic.com response A 209.85.149.138 A 209.85.10.10.10.000 response CNAME maps.l.google.com CAME wideo. A mail.google.de A translate.google.de response CNAME video.google.com CAME wideo. A books.google.de A books.google.de A books.google.de CNAME video.google.com CAME wideo.google.com capponse CNAME video.google.com capponse CNAM

Overview of our DNS dataset

We obtained real-life DNS traces:

- DNS query log of a German university campus network
- >4000 distinct users (on average 2100 active per day)

Additionally, for each hostname we have recorded

- TTL value
- query and reply size
- lookup latency (using Google's DNS Resolver)

Characteristics of DNS traffic

- 80% of queries are for top 10,000 hostnames
- regardless of TTL most RRs remain constant for a long time

Characteristics of DNS traffic

• almost every website visit causes a DNS query burst

Firefox without prefetching

Chrome with prefetching

en.wikipedia.org

upload.wikimedia.org nn.wikipedia.org th.wikipedia.org creativecommons.org www.wikimediafoundation.org www.mediawiki.org

en.wikipedia.org

geoiplookup.wikimedia.org commons.wikimedia.org el.wikipedia.org en.wikibooks.org en.wikinews.org en.wikiquote.org en.wikisource.org en.wikiversity.org en.wiktionary.org et.wikipedia.org gl.wikipedia.org lists.wikimedia.org simple.wikipedia.org species.wikimedia.org wikimediafoundation.org www.wikilovocmonumonte.do

Agenda

Missing Privacy in DNS

Characteristics of DNS Traffic

DNS Anonymity Service

- Broadcast
- Mixes

Range Queries

Architecture of the proposed DNS Anonymity Service

- drop-in replacement for DNS Resolver
- two building blocks
 - broadcast mechanism
 - mixes cascade

Motivation for broadcasting

What if each client had a local copy of the full DNS database?

- clients get **zero lookup latency**
- all DNS queries are **unobservable**

Motivation for broadcasting

What if each client had a local copy of the full DNS database?

- clients get **zero lookup latency**
- all DNS queries are **unobservable**

We can exploit the power-law distribution of queries!

• compromise: local copy for most popular hostnames only

Anonymity Service

- monitors most popular hostnames for updates
- provides full copy of database to new clients
- broadcasts changed resource records to clients

Evaluate implementation in trace-driven simulations

Broadcasting is promising and practicable

Hit Rate

100 entries

40%

10,000 entries

83.9%

100,000 entries

94.5%

Required Traffic

Broadcasting is promising and practicable

Anonymise remaining queries with mixes

- Motivation:
 - already deployed in practice (Tor, AN.ON)
 - attacker model of practical systems reasonable for DNS
- Performance impact: cryptographic operations, network latency
- Implementation specifics
 - **channels** for low latency (re-established after 60s)
 - fixed-size messages (queries: 57 bytes, replies: 89 bytes) to counter traffic analysis
 - Java, BouncyCastle, RSA (2048 bit), AES (128 bit OFB)

Performance evaluation of our implementation

Trace-driven simulation using recorded lookup delays

- 2082 concurrent users
- 107 queries/sec
- DNS traffic increases by 100% (240 KB per day)
- Latency results are also promising

percentile	50%	90%	
without mixes	9.2 ms	46.2 ms	
3 mixes (LAN)	10.9 ms	52.0 ms	
3 mixes (WAN)	171 ms	274 ms —	mix-mix RTT 20ms client-mix RTT 80ms

• Congestion once >1000 queries/sec issued

\rightarrow Performance of mixes appears to be satisfactory for DNS

UH

Agenda

Missing Privacy in DNS

Characteristics of DNS Traffic

DNS Anonymity Service

Range Queries

Related Work: Range Queries

- hide actually desired queries using n-1 dummy queries
- should offer low latency; but no trace-driven evaluation so far

Also related, but not of interest for us: **PPDNS** [Lu & Tsudik, 2010]

- implements cPIR
- is built on top of CoDoNS

Trace-driven evaluation of range queries

- We implemented a range query simulator
 - clients draw n-1 dummies randomly from set of all hostnames
 - range queries are compressed using zlib
 - transmitted via TCP to Range Query DNS Resolver
- Trace-driven simulation using recorded lookup delays
- Evaluation using our DNS traces
 → traffic volume increases x4 for n=10, x24 for n=100
- Basic implementation
 - each reply is returned independently to the client
 - latencies do not increase considerably even for n=1000
- **But:** attacker can exploit dependencies of consecutive queries!

UΗ

Timing attack based on traffic bursts

Preventing the timing attack

22

Preventing the timing attack is expensive

Open question: how to prevent semantic intersection attack?

Summary

Missing Privacy in DNS

- queries leak to DNS Resolver
- low-latency, practical solution

Characteristics of DNS traffic

- power-law distribution
- query bursts

Proposed DNS Anonymity Service

- broadcast: zero latency + unobservability
- mixes: satisfactory performance

Evaluation of Range Queries

- fast for isolated queries
- preventing timing attack is expensive

1.04

