

A Privacy-Preserving Platform for User-Centric Quantitative Benchmarking

Dominik Herrmann

Florian Scheuer Philipp Feustel Thomas Nowey Hannes Federrath

University of Regensburg, Germany

MOTIVATION

PROPOSED SOLUTION

EVALUATION

Classical Offline Benchmarking

Complex methodology for identification of best practices within an industry by in-depth comparison of various players.

Participants give up some privacy for a greater good: specialised (trusted) consultants learn internal details.

Benchmarking projects are often expensive and cumbersome.

Objective: Develop an Online Platform for Quantitative Benchmarking of KPIs

Addresses only a sub-problem:

enable users to compare numeric metrics with their peers without disclosing their own values

Objective: Develop an Online Platform for Quantitative Benchmarking of KPIs

Addresses only a sub-problem:

enable users to compare numeric metrics with their peers without disclosing their own values

Main Contributions:

- I) platform protects identity of participants
- 2) user-driven peer group formation
- 3) support for SMC protocols with differing communication models

We will only show how to **compute the sum** of KPI values.

Application Area: Financial Sector

Compare business-critical metrics with competitors, e.g. proportion of subprimes in credit portfolio

Application Area: Financial Sector

Compare business-critical metrics with competitors, e.g. proportion of subprimes in credit portfolio

Application Area: Financial Sector

Compare business-critical metrics with competitors, e.g. proportion of subprimes in credit portfolio

Requirements

FUNCTIONALITY

- Users can request a new benchmarking at any time.
- Users can specify the peer group requirements for new benchmarkings.
- Users can view a listing of available benchmarking requests.
- Users can opt to (not) take part in announced benchmarkings.
- Support for various statistics

Requirements

SECURITY

- Users are anonymous against platform provider and other users.
- Benchmarked KPI values are not disclosed to provider and other users.
- Requested peer group formation is enforced by platform.

Requirements

- Platform is built on off-the-shelf technologies.
- Communication protocol is clientdriven (polling).
- Benchmarking results are available within short time.
- Platform offers satisfactory performance for reasonable loads.

Related Research

Bogetoft et al. (2002)	Internet Based Benchmarking
Crotts et al. (2006)	A Case Study on Developing an Internet- Based Competitive Analysis and Benchmarking Tool for Hospitality Industry
Kerschbaum et al. (2008)	Privacy-Preserving Benchmarking
Catrina et al. (2008)	Fostering the Uptake of Secure Multiparty Computation in E-Commerce

Identified important building blocks, but no platform available that meets our requirements.

Research Questions

How to combine existing building block technologies to address our requirements?

Will the performance of the benchmarking platform be acceptable?

MOTIVATION

PROPOSED SOLUTION

EVALUATION

Have to Address Three Main Issues

Protect privacy of users

3

Allow for user-driven peer group formation

Architecture

- U Users
- SP Platform Service Provider
- CA Certification Authority

Architecture

- U Users
- SP Platform Service Provider
- CA Certification Authority

Some SMC protocols assume P2P architecture!

end-to-end encryption allows for P2P messages

Activities of Involved Parties

Users

register at platform request a new benchmarking participate in published benchmarkings

SP

publishes benchmarkings and results on a bulletin relays messages for users

CA

checks users' identity and selection attributes issues certificates for users

Attacker Model

Users

honest but curious may collude or cooperate with SP try to learn KPI values and identity of other users

SP

honest but curious tries to learn KPI values and identity of other users

CA

trusted, does not attack

does not cooperate with SP and users

Possible extensions: truth-telling, free-riding, active attacks, ...

User-Driven Peer Group Formation

Users provide Selection Attributes during registration at CA:

User specifies required Selection Criteria for benchmark initiation:

Platform will allow only users with matching attributes to participate.

Protecting Privacy of Users

Only (trusted) CA knows real identity of users, SP does not.

Users are addressed with pseudonyms (public-key certificates) that do not contain any identifying information.

Selection Attributes may reveal identity, thus must not be disclosed to platform provider or other users.

Anonymity of users still at risk: users must hide their IP address from SP!

Protection Against Intersection Attacks

Cannot use **static pseudonyms** due to intersection attacks!

INTERSECTION ATTACK RECIPE

- Set up a benchmarking and record the set of participating pseudonyms
- 2. Vary selection criteria slightly
- 3. Go back to step I

Intersect and compare sets to deduce actual selection attribute values of various pseudonyms.

Protection Against Intersection Attacks

Cannot use **static pseudonyms** due to intersection attacks!

INTERSECTION ATTACK RECIPE

- Set up a benchmarking and record the set of participating pseudonyms
- 2. Vary selection criteria slightly
- 3. Go back to step I

Intersect and compare sets to deduce actual selection attribute values of various pseudonyms.

Solution: Never re-use a pseudonym!

Clients create ephemeral key-pairs for each new benchmarking and for each participation.

User create permanent key pair Op Selection Attributes

verify identity and correctness of Selection Attributes

sign Permanent Public Key

create Attribute Certificate

CA

Phase I Register at CA

00	0	Pebus GUIClient	_						
File	Options Help								
		Register Setup benchmarking Participate							
	Your identity	Pebuc Inc.							
		Register							
	Selection attribute	Location of your company							
	Value	Bavaria (Add Remove)							
	Attribute Identifier	Value							
	numberOfEmployees	1							
	LocationRegion	Bavaria							
	Set selection attributes								

Peer Group Formation

E

Phase 2 New Benchmarking

User

CA

create ephemeral key pair

authenticate with Permanent Key Pair authenticate user

sign Ephemeral Public Key

Peer Group Formation

Phase 2 (cont.) New Benchmarking

User

send Benchmarking Request

KPI (proportion of subprimes)

deadline (60 minutes)

Selection Criteria (Germany, financial services, 1000-10.000 employees) SP

check signature

publish benchmarking

wait for participants to join

00	0	_	Pebus GUIClient					
File	Options	Help						
		_	Register Setup benchmarking Participate					
	КРІ		Proportion of subprimes in the asset portfolio 🗘 SMC-Profile	SumSecretSharing 🛟				
	Selection c	riteria	Location of your company 🛟 = 🗘 Bavaria	Add Remove				
	numberOfE LocationReg	mployee jion = B	es < 10 avaria					
Deadline in seconds 50								
	Announce							

 \bigcirc

Peer Group Formation

Phase 3 Participation

Peer Group Formation

Phase 3 (cont.) Participation

User

send Participation Certificate

SP

iff presented Selection Critera match the ones of the benchmarking and certificate is valid:

accept client and add Ephemeral Public Key to List of Participants

once deadline is reached: publish *List of Participants*

00	0	_			Pebus GUIClie	nt	
File	Options	Help		_			
	Register Setup benchmarking Participate Get announced benchmarkings						
	Identifier		KPI		Operator	Deadline	Selection Criteria fullfilled
	17450509	56	Proportion	OfSubPrime	SumSecretSharing	59 Seconds	yes
	Specify you	ır KPI for:	ProportionC)fSubPrimes	InAssetPortfolio	23	
	Enor	ugh particij dline expire	pants?# (ed? in: ()	Participate Result: -)	
		-server sta	irtea				0

Protection of Benchmarked KPI Values

SumSecureSplit

Robust Summation (Atallah, 2004)

P2P communication topology

 $O(n^2)$ message exchanges

Low computational complexity

SumHomomorphic

Paillier cryptosystem (1999) with additive homomorphic property: $E(x) \cdot E(y) = E(x + y)$

Client/server topology

O(n) message exchanges

High computational complexity

More SMC algorithms to be integrated in future work.

00	0				Pebus GUIClient		
File	Options	Help		_			
				Register	Setup benchmarki	ng Participate	
				Get ar	nounced benchmar	kings	
	Identifier		KPI		Operator	Deadline	Selection Criteria fullfilled
	174505095	56	ProportionO	fSubPrime	. SumSecretSharing	59 Seconds	yes
Specify your KPI for: ProportionOfSubPrimesInAssetPortfolio 23 Participate							
	I Enot I Dead I SMC	ugh particip dline expire :-Server sta	pants?#27 ed? in:0 urted	7 Seconds	Result: 760		

MOTIVATION

PROPOSED SOLUTION

EVALUATION

Prototypical Implementation

Implementation in Java SE 5

All connections encrypted with TLS

Hybrid encryption of P2P messages

Proprietary XML message format

Client can be automated for evaluation

SumHomomorphic induces less traffic

Total server-side traffic of one benchmarking for varying number of participants

SumHomomorphic induces less load

Average CPU load of server components for varying number of participants

SumSecureSplit

SumHomomorphic

In Conclusion

Our platform facilitates quantitative benchmarking with user-controlled peer group formation.

It offers practical anonymity and unlinkability to its users.

Performance of implemented secure multi-party computation protocols is sufficient for our purpose.

Summation with Paillier crypto system is more efficient than Robust Summation.

Dominik Herrmann

dominik.herrmann@wiwi.uni-r.de

