Wissenschaftliche Bewertung von DRM-Systemen Scientific evaluation of DRM systems

Hannes Federrath

http://www.inf.tu-dresden.de/~hf2/

- **#** Adversary model
- **#** Strength of existing systems
- **#** Tendencies
- **#** DRM technologies
- **%** Summary

What is the scope of the attacker?

More general: What are the security demands?

- S confidentiality of content
- ∞ integrity of content
- ∞ availability of content

Confidentiality:

▷ protection against piracy

copy one content

copy every content in a certain time frame

+ break the entire system (copy every message at every time)

% Integrity:

- ∞ authorized access to content
- ∞ protection of ownership of content

% Availability:

∞ prevention of denial of service attacks

Adversary model

Security depends on the supposed strength of the attacker.

- **#** Resources
 - 🔊 Money
 - 🗵 Time
 - 🗵 Knowledge
- **#** insider or outsider
 - concerning organizational aspects (secrecy of master encryption keys)
 - S concerning design secrets
 - (e.g. of protection functionality in hard- and software)
- **#** Who wants to attack a system?
 - ➢ Hobbyist (naïve attacker, no financial efforts)
 - Serious attacker (intelligent, probably no financial efforts)
 - ➢ Professional attacker (intelligent, financial motivation)

The existence of specialized tools shifts the "knowledge" to anybody

Strength of existing systems

% Very limited protection

- ➢ Most systems
 - protect against hobbyists
- ▷ DRM systems realized in software
 - ho or nearly no protection against serious attacks
- ▷ DRM systems realized in hardware
 - + weak protection against serious attacks

% In the best case:

➣ Technical components of DRM systems consist of special adapted and well-known IT security functions

% Worst case:

Content contains proprietary DRM signals or functions without any special protection

Tendencies

- **#** Pirates try to "reverse engineer" DRM systems
 - \boxtimes make them useable on other platforms (Linux, ...)
 - make them independent of a certain hardware and software seller
- **#** Pirates in the Internet shift their "activities" to services
 - ∞ peer-to-peer services
 - ∞ anonymous communication services
- # Attackers make their knowledge public as automated tools
 Is tool
 Is tool

 Hobbyists can now do professional attacks

DRM Technologies

Design Options for Copy Protection

Protect pay-services from unauthorized access

Design Options for Copy Protection

Protect pay-services from unauthorized access

Design Options for Copy Protection

Never! Too dangerous!

What is possible in software?

DRM Technologies

- **#** Basic IT security technologies
 - ➢ Encryption
 - Solution State State
- **#** Special designed DRM technologies
 - ➢ Fingerprinting
 - S Watermarking
- **%** Naïve security mechanisms
 - ➢ Regional coding of content
 - Filter mechanisms
 - Incompatible formats and media
 - ▷ DRM codes without any protections against removing
 - ⊠ ...

content detection

Broadcast encryption

> LoFi Broadcast, HiFi Encryption

- Divide stream into quality layers
 - ➣ Everybody gets the low quality layer
 - ➢ Paying customers get encrypted layers

₩ MP3:

➡ division of mp3 stream into quality layers

costs are linear in the number of users

DRM Technologies

- ೫ Basic IT security technologies
 ∞ Encryption
 ∞ Tamper resistant hardware devices
 ೫ Special designed DRM technologies
 ∞ Fingerprinting
 - Watermarking
- **%** Naïve security mechanisms
 - ➢ Regional coding of content
 - Filter mechanisms
 - Incompatible formats and media
 - ▷ DRM codes without any protections against removing
 - ⊠ ...

content detection

Watermarking

Watermarking

- **#** Scope: Protect authorship of digital content
- **#** correlation necessary
- **%** few 100 bit
- **#** strong changes

> Watermarking

- ℜ Digital-Analogue-Conversion
- **%** Analogue-Digital-Conversion
- **#** Re-Sampling
- **#** Re-Quantization
- **#** Compression
- **#** Dithering
- **#** Rotation
- **#** Translation
- **#** Cropping
- **%** Scaling
- **%** Collusion Attacks

Copyright (C) 1998 Document-ID: #A53-229D789 Author: J.Fitzgerald Title: White Christmas

> Security of watermarking systems

% Theory

- robustness
- non-interference
- ☑ detectability
- ₭ Praxis: (attacks by M. Kuhn, F. Petitcolas, 1997)▷ StirMark
 - ♦ Software
 - removes watermarks
 - + watermark is no longer detectable
 - http://www.cl.cam.ac.uk/~fapp2/watermarking/stirmark/
 - Mosaic Attack
 - divides web images into a mosaic of tabular cells
 - + browser reconstructs the view of the image

Stirmark Attack

- **#** non-linear transformation of a picture
- **#** synchronization gets lost
- **#** no anchor for detector to find the position of embedded signal

Mosaic Attack

- **#** divides web images into a mosaic of tabular cells
- **#** uses html statements
- **#** browser reconstructs the view of the image
- # protects from very simple web robots that look for illegally distributed material

DRM Technologies

- **#** Basic IT security technologies
 - ➢ Encryption
 - Solution State Not State S
- **#** Special designed DRM technologies
 - ➢ Fingerprinting
 - ➢ Watermarking
- **%** Naïve security mechanisms
 - Regional coding of content
 - Filter mechanisms
 - Incompatible formats and media
 - DRM codes without any protections against removing
 - ⊠ ...

copy protection in videos recorders

copy protection in videos recorders

DRM codes without any protections against removing

DRM codes without any protections against removing

incompatible formats and media

incompatible formats and media

Basic security goals and corresponding technologies

Secure DRM systems

Secure DRM systems connect a DRM signal with the content to protect in a way that the content signal is useless without the DRM signal.

% Options:

- ▷ DRM signal is part of the content signal (e.g. in watermarking systems)
- ▷ DRM signal is necessary to access/decrypt the encrypted content signal

Important point:

- ▷ Detection of DRM signal cannot be bypassed
- ➢ Hardware or software encapsulation
- **%** Software
 - ∞ not recommendable

% Hardware

▷ breaking is a matter of time and money