
Web MIXes: A system for anonymous and
unobservable Internet access

Oliver Berthold1, Hannes Federrath2, and Stefan Köpsell1

1 Dresden University of Technology, Fakultät Informatik
{ob2, sk13}@inf.tu-dresden.de

2 International Computer Science Institute, Berkeley
hannes@icsi.berkeley.edu

Abstract. We present the architecture, design issues and functions of
a MIX-based system for anonymous and unobservable real-time Internet
access. This system prevents tra�c analysis as well as �ooding attacks.
The core technologies include an adaptive, anonymous, time/volume-
sliced channel mechanism and a ticket-based authentication mechanism.
The system also provides an interface to inform anonymous users about
their level of anonymity and unobservability.

1 Introduction

Using Internet services nowadays means leaving digital traces. Anonymity and
unobservability on the Internet is a sheer illusion. On the other hand, most
people agree that there is a substantial need for anonymous communication as a
fundamental building block of the information society. The availability of anony-
mous communication is considered a constitutional right in many countries, for
example for use in voting or counseling.

We are doing research on anonymity and unobservability in the Internet to
evaluate the feasibility and costs of such systems and to explore several deploy-
ment opportunities within the Internet. Our goal is to explore the foundations
and to provide a secure and anonymous technical infrastructure for the Internet.

Systems that provide unobservability ensure that nobody, not even the
transport network, is able to �nd out who communicates with whom. However,
the communicating parties may know and usually authenticate each other. Ex-
ample: Paying users browsing a patent data base.

Systems that provide anonymity ensure that client or server (or both) can
communicate without revealing identity. Example: Users browsing the World
Wide Web.

During the last three years we developed several MIX-based and proxy-based
anonymity services (for web sur�ng and similar real-time services). Our aca-
demic interest is to show that anonymity and unobservability can be e�ciently
realized. The special objective is to develop a theoretical background for the
e�cient implementation of anonymity services in the Internet. We are building
an anonymous transport system based on a speci�c IP format. The goal is to



Web MIXes: A system for anonymous and unobservable Internet access 117

provide asynchronous (like SMTP) as well as nearly synchronous modes of com-
munication (like HTTP). The system should also be able to handle various kinds
of packets.

The web site of our project is http://www.inf.tu-dresden.de/~hf2/anon/.
Anonymity and unobservability are not new security goals. The following

systems that provide anonymity services are known both in literature as well as
in the Internet: (selection)

� Anonymizer [1],
� Crowds [2],
� Onion Routing [3],
� Freedom [4].

The attacker models for these systems are di�erent, i.e., these systems provide
di�erent levels of anonymity. A comparison of these systems is given in [5].

This paper is organized as follows. In section 2 we give an overview of the
architecture of our system. Section 3 deals with several attacks and their pre-
vention. In section 4, we explain additional design issues of our practical system
and their implementation.

2 Components and Functionality

Basically, we use

� a modi�ed Mix concept with
� an adaptive chop-and-slice algorithm (see below),
� sending of dummy messages whenever an active client has nothing to send,
� a ticket-based authentication system that makes �ooding attacks impossible
or very expensive and

� a feedback system that gives the user information on his current level of
protection.

The MIX concept [6] as well as the adaptive chop-and-slice algorithm will be
described in this section. The ticket-based authentication procedure is explained
in section 3.1 and the feedback mechanism in section 3.1.

The complete system consists of three logical parts: the JAP (Java Anon
Proxy) on the client-side, the MIXes and the cache-proxy on the server-side.
These parts are concatenated into a chain, building the anonymous tunnel. All
network tra�c to be anonymized is sent through this tunnel. In principle, a single
user remains aonymous since the tunnel has many entrances (users), but only
one exit. Every user can possibly cause the tra�c observed at the tunnel-exit.

JAP. JAP is connected to the �rst MIX via Internet. Ideally, the MIXes should
be connected via separate high-speed connections due to performance reasons.
However, this would be very complex and expensive, hence our MIXes use only
the Internet.



118 Oliver Berthold, Hannes Federrath, and Stefan Köpsell

Browser

Cascade of MIXes:
– real-time deployable MIXes
– different operators
– different locations
– cascade: fixed sequence of servers
– secure against traffic analysis
– for better performance: more than one cascade

CA

Web 
Server

Certification Authority:
– independent of Web Mixes System
– issues certificates of public keys

Information Service:
– traffic situation
– anonymity level
– warnings

Java Anon Proxy:
– client software
– platform independent
– local proxy
– constant dummy traffic
– adaptive time-slices
– tickets against flooding

unobservable data flow

redundant Info Service requests

Info 
Service

Client 1

.

.

..
.
.

Browser

Client n

Anonymity group:
Each client is unobservable in
the group of n clients

JAP Cache
Proxy

Server

Server

JAP

MIXMIX

Info
Server

MIX

Info
Server

Secure reliable update
and replication of Info
Servers

Fig. 1. Architecture of our service

The JAP is a program which is installed locally on each user's computer. All
network tra�c to be anonymized goes through this software. The JAP transforms
the data so that it can be anonymized by the MIXes.

Following functions are provided by JAP:

� Registration of the user to the MIXes,
� Periodical set-up of time-slice-channels (generating and sending of asymmet-
rically encrypted channel-building messages),

� Sending and receiving data via the channels. Dummy messages (for instance,
random bits or encrypted zero bits) are generated if there is nothing to send.

� Listening for requests coming from the browser or other programs of the
client that like to communicate in an anonymous way,

� Filtering of content that would be dangerous for the anonymity, e.g., cookies
and active contents like JavaScript, ActiveX and other embedded objects,

� Transforming data into the MIX-format and sending through an anonymous
channel,

� Receiving data from the active MIX-channel and forwarding it to the origi-
nating application,

� Periodical utilization of an info-service, so that the user gets feedback about
his current level of anonymity.



Web MIXes: A system for anonymous and unobservable Internet access 119

MIXes. Our basic concepts are very similar to other systems based on the idea of
MIXes [6]. A MIX scrambles the order of data streams and changes their coding
using cryptography to make tra�c correlation attacks di�cult.

The MIXes are simple computers connected via the Internet. They form a
logical chain, called �MIX-cascade�. The �rst MIX receives data sent by the JAPs.
A MIX makes some cryptographic transformations (strips a layer of encryption,
prevents replay attacks, reorders messages and creates a batch that consists of
all messages) and sends the data to the next MIX.

The last MIX sends the data to the cache-proxy.
By means of constant dummy tra�c, all senders send messages at any time to

create the same anonymity group. If necessary, random data is generated which
cannot be distinguished from genuine encrypted tra�c. Dummy tra�c has to be
sent between the endpoints of a communication relation. Dummy tra�c between
MIXes only is not su�cient to prevent tra�c analysis.

Our attacker may

� control up to n � 1 MIXes if n is the total number of MIXes in the MIX-
cascade,

� control the cache-proxy and knows the receiver and content of all messages
because all tra�c goes (mostly unencrypted) through the cache-proxy to the
Internet,

� block every message, generate his own messages and modify all messages.
These active attacks will be recognized and consequently prevented by a
ticket-based authentication system explained in section 3.1.

Cache-proxy. The cache-proxy sends the data to the Internet and receives the
answers from the servers (e.g., web servers). The answers will be sent back to
the user via the MIXes (in reverse order). As JAP does, the cache-proxy has to
send dummy tra�c as well.

Once a time-slice-channel is established, it can transport a certain number
of bytes. Thereafter, the channel is released automatically. If more data needs to
be transmitted sequential time-slice connections must be established. See section
3.1 for more information.

Another functionality of both JAP and cache-proxy a�ects the HTTP pro-
tocol. As far as security and performance are concerned, it makes sense that the
cache-proxy automatically loads every object embedded into a HTML-page, e.g.,
links to embedded images. The cache-proxy can then send the whole page (in-
cluding the embedded objects) at the same time through the anonymous channel.
This idea was proposed the �rst time by the Crowds project [2].

In order to realize this idea, both cache-proxy and JAP must provide the
following functions:

� Cache-proxy scans the data received from a web server for embedded objects.
� Cache-proxy automatically requests these objects and sends them through
the anonymous channel to the user's JAP. In addition, cache-proxy should
provide traditional caching functionality in order to reduce the number of
requests sent to the Internet.



120 Oliver Berthold, Hannes Federrath, and Stefan Köpsell

� JAP replies to the requests for embedded objects by sending data already re-
ceived from the cache-proxy. The number of requests sent from JAP through
the anonymous channel is thereby dramatically reduced.

Info-service. Info-service provides data for maintenance and operation of the
anonymous network. It provides

� addresses and public keys of the MIXes,
� information on the tra�c situation,
� the availability of MIXes,
� data about the achievable level of anonymity, i.e., the number of active users
in the anonymous network.

A screenshot of the graphical user-interface of the info-service is given in
section 4.2.

3 Attacks and Solutions

For real-time communication, we additionally developed the following concepts
both to make tra�c analysis harder and to increase the e�ciency.

Tra�c analysis means that an attacker who is able to control the cache-proxy,
can link a particular request to the same user. Every message was possibly sent
by a di�erent group of users, so that the attacker can use this information to
intersect the anonymity group.

Several attacks exist against the basic concept of MIXes. The attacker's goal
is to observe users or to stop the service (Denial-of-Service attack, DoS-attack).

We describe concepts which prevent these attacks or make them very di�cult
and eventually identify the attacker.

3.1 Solutions against observation

There are two sorts of attacks: passive and active attacks.
A passive attacker can only eavesdrop on communication links, but cannot

modify any network tra�c.
It is impossible to detect passive attacks. The only solution is to prevent

them.

Dummy messages Dummy messages are sent from the starting point (i.e.,
client) of a communication into the MIX network to make tra�c analysis harder.

Sending dummy messages guarantees that all users send the same amount of
data during each time slice. Since all tra�c (including the dummies) is encrypted,
no one, even an attacker, who observes all network cables can know which user
sends dummies and which one sends real information.

If the group of users does not change (especially when nobody leaves the
group), a passive attacker cannot split the group.

Thus it is necessary that each user operates at least one channel at all times.
He has to:



Web MIXes: A system for anonymous and unobservable Internet access 121

� periodically send channel-building messages,
� send real data or dummy tra�c on his channels,
� receive data sent by the cache-proxy.

Each MIX has to send dummy messages back to the user if the user does not
receive real data. This ensures that each user receives the same amount of data
during each time slice. Since at least the trustworthy (i.e., �unattacked�) MIX
will send these dummies, it successfully avoids these attacks, supposing that any
other MIX (or the cache proxy) does not send dummies.

Adaptive chop-and-slice algorithm Large messages (and streaming data)
are chopped into short pieces of a speci�c constant length, called �slice�. Each
�slices� is transmitted through an anonymous MIX channel. In addition, active
users without an active communication request send dummy messages. Thus
nobody knows the starting time and duration of a communication, because all
active users start and end their communication at the same time. Otherwise,
an observer could determine where and when the anonymous channel starts
and ends and could �nd out who is communicating with whom. Depending on
the tra�c situation, we modify the throughput and duration of the anonymous
channel. The concept of chopping long communications into slices was introduced
the �rst time in [8].

We use a modi�ed version with an adaptive duration or throughput. Once a
time-slice-channel is established, it can transport a certain number of bytes and
is afterwards released automatically. If an anonymous connection takes longer
than one time-slice, it will be composed of a number of time-slices. In this case,
JAP provides ID numbers, which cache-proxy uses to refer to an anonymous
connection (Slice number Sl, see Fig. 2).

In comparison to sending each MIX message separately, a MIX channel is
more e�cient, because it's not necessary to decrypt all these messages using a
slow asymmetric algorithm. Since a MIX must collect all messages of the users
before sending them to the next one, the delay time in every MIX is proportional
to the length of messages.

To establish a new slice, a user sends (together with all other users) a con-
ventional MIX message through the MIXes. This message contains a symmetric
key for each MIX. This key will be used to decrypt or encrypt data, which will
be sent later through the channel. The time when the channel starts is de�ned
by the state of the whole system. Normally, it starts when the last slice ends.
The slice ends when a committed number of bytes have been transferred. In case
of an error, especially if an attacker has manipulated some data, the channel
is supposed to stop immediately. Otherwise, the attacker can possibly observe
which channel is damaged and is thereby able to correlate sender and receiver.

Ticket-based authentication system A very di�cult problem occurs when
an active attacker �oods the anonymity service with messages in order to uncover
a certain message.



122 Oliver Berthold, Hannes Federrath, and Stefan Köpsell

{Get Server/Page.html}

response

Get Server/Page.html

{Response NIL, wait, Sl, Padding}

{Response Block[i], wait, Sl, Padding}

{Response Block[i], EOF, Sl, Padding}

{Get C-Proxy, Sl}

END

JAP
Cache 
proxy

MIX MIX MIX

Create and store Sl

IF (no answer from
Server yet) AND (no
timeout)) THEN send

IF not EOF send

ELSE send

Server

IF not EOF send

ELSE send

Fig. 2. Time Slice Protocol

We believe that we have found a new concept to suppress �ooding of messages
both from outsiders (normal users) and insiders (MIXes).

Firstly we limit either the available bandwidth or the number of concurrently
used time slices for each user.

Secondly every user has to show that he is allowed to use the system at the
respective time �slice� by providing a ticket only valid for a certain �slice�. To
protect the identity of the user, the ticket is a blinded signature [7] issued by the
anonymous communication system. More precisely, each MIX issues a limited
number of tickets for each channel and user.

Detailed description of procedure:

Step 1: The user established a connection to a MIX. This connection guar-
antees con�dentiality and integrity and authenticates both MIX and
user (i.e., it is possible to use SSL). The user owns a digital certi�cate
and authenticates himself to the MIX. The MIX checks that he gets
this certi�cate for the �rst time (so it is impossible to get more than
one ticket by reconnecting to the MIX). The certi�cate authority guar-
antees that each user gets one and only one certi�cate or it must be
recognizable that di�erent certi�cates belong to the same user (i.e., by
including the user's identity).



Web MIXes: A system for anonymous and unobservable Internet access 123

Step 2: Now the user sends a blinded message to the MIX, which the MIX
should sign. This message consists of a key for a symmetric cipher and
some bits forming a redundancy.

Step 3: The MIX signs the message using a special key (pair), which is only
valid for a certain time slice. We are using RSA and for each new key
pair (for each time slice) we use the same modulus n, but we change
the public and private exponents.

Step 4: The user unblinds the message and veri�es the signature. Now he owns
a valid ticket, which is not linkable to him.

Step 5: The user repeats steps 1-4 for each MIX.
Step 6: The user generates the message (channel-building message or data mes-

sage). Assuming that there are k MIXes. The user concatenates the
ticket that he gets from MIX k with the data he wants to send. Then
he encrypts the message. He uses the public key of MIX k in order to
encrypt the �rst part of the message. For the rest of the message he
uses the symmetric key included in the ticket. Next, he concatenates
the ticket issued by MIX k� 1 with the generated message for MIX k.
He encrypts the message in the same way using the public key of MIX
k� 1 and so forth until he encrypts the ticket issued by the �rst MIX.

Step 7: The user sends the message (generated in step 6) through the MIX-
cascade.

If the MIX uses the same prime numbers p and q (and therefore the same
modulus n) for the asymmetric encryption/decryption of the message and for
signing/checking the tickets, there will be no additional overhead for verifying
the tickets.

The ticket exactly �ts in the �rst (asymmetric encrypted) part of the message
(step 6). The MIX decrypts the message and veri�es the ticket in one step by
decrypting the message using the product of it is secret decryption key and
it is public signature test key. Furthermore, the MIX extracts the symmetric
key, which will be used for the channel and veri�es the ticket by checking the
redundancy.

As we already explained, a ticket only consists of a symmetric key and a
redundancy. For an acceptable level of security, about 200 bits are needed to
store a ticket. Since we use RSA, the size of the ticket would increase at least
up to 1024 bits.

Each ticket has unused space of about 800 bits. It is possible to store other
data in this free space, but it must be known when the ticket is requested.
This is actually not a disadvantage, since the ticket is used for the channel-
building message. The free space of each ticket could be used to store a part
of the message, which is addressed to the next MIX. Thus the channel-building
message would become smaller, because we only need 200 bits per Mix instead
of 1024 (except for the last MIX).

In order to use this optimization, we have to change the procedure as follows:
Steps 1-4 are modi�ed so that the tickets will be requested sequentially start-

ing at the last MIX. The user generates the next ticket (step 2). He chooses the



124 Oliver Berthold, Hannes Federrath, and Stefan Köpsell

symmetric key, computes the redundancy and �lls the free space with the �rst
bytes of the already generated message.

Since we know the whole remaining message at the time we generate a ticket,
we can use a �ngerprint of this message as redundancy. The MIX can calculate
the �ngerprint in step 7 and thus verify the integrity of the whole received
message.

Step 1-4 (and perhaps step 6) can be done parallel, so that we can only send
one large message (requesting many tickets) instead of many short ones. This
will increase the e�ciency, especially the authentication (step 1) has to be done
only ones.

If the duration of one time slice is long enough, the overhead for the ticket
method won't be very high, since we'll need only one ticket per MIX and channel.
The most expensive factor is that the user must directly get the tickets from each
mix through an encrypted channel.

Using tickets is useful in order to add the dimension of a prepaid payment
system for the anonymity system, too.

However, this has not yet been implemented.

Measurement of anonymity level If the attacker observes all network tra�c,
he is able to reduce the number of possible senders (i.e., the number of members
within the anonymity group) of a message. At the extreme, he may be able to
identify the user who sends the message. This is called �intersection attack�.
The intersection attack can only be prevented if the anonymity group remains
constant.

If the group of active users had changed, the linked messages must have been
sent by a user, who is member of the intersection of all groups of users.

Dummy tra�c makes intersection attacks more di�cult, but does not com-
pletely prevent them. If all active users permanently send dummy messages, each
received message could possibly come from any user.

However, up to now, it is not clear how to prevent such an attack, especially
if we consider a global observer.

The anonymity level depends on the number of active users within the system.
We need a mechanism or a heuristic that informs the user of his level of protection
when he requests contents from the Internet.

In our design we inform each user of his current level of anonymity. The user
can decide to recede his communication relation if the anonymity level becomes
less than a user-de�ned threshold, i.e., the number of active users in the system.
We believe that it is important for the user to be aware of his degree of privacy.
This makes the system more reliable and trustworthy for the user.

Each MIX has to publish periodically

1. the number of active users and
2. the logout time of each user who leaves the group.

The client (JAP) receives this information via the info-service and computes
the time when the �rst linkable message of the current session was sent. JAP



Web MIXes: A system for anonymous and unobservable Internet access 125

computes how many users were active from this time on, using the published
logout times. These users represent the anonymity group, because only they are
possible senders of all messages.

When a new connection is established, JAP stores the time and number of
active users. Every time the MIXes publishes the logout times, JAP decreases
the size of the anonymity group for each detected relevant logout. A logout is
relevant if the corresponding logout was earlier than the stored starting time.
The user will be alerted if the anonymity group becomes too small.

The information about the number of active users and logout times are dig-
itally signed by each MIX. So it is impossible for the attacker to manipulate
them in order to fake a bigger anonymity group.

The client should always assume that the lowest published number of active
users and the highest number of logouts is true in order to prevent attacks from
a MIX itself.

Since it is impossible to prevent the intersection attack, we can only give
advice to users on how to mitigate the e�ect of intersection attacks: The success
of an attack can be further reduced by avoiding linkable events such as Cookies,
request of personal web pages or usage of pseudonyms in chat services more than
once.

If an attacker also uses active attacks, he can increase his chance to identify
a sender. In order to do so, he tries to exclude particular users from the group
of possible senders by

� blocking some messages or destroying a network cable,
� sending messages, which appear to be sent by other users, and
� manipulating messages.

However, it is possible to detect active attacks.

3.2 Protection against DoS-Attacks

In section 3.1 we described a procedure for detecting active attacks, but we did
not discuss what to do if we detected such one. If an attack is ignored or a�ected
message is simply deleted, the attacker has partly reached his goal.

One solution could be to delete all a�ected messages or to close all open
channels. As a consequence, it would be very easy to start a DoS-attack: The
attacker only has to send one broken message in order to impair the whole MIX-
cascade. If the attacker is unable to break the anonymity, he may simply prevent
the usage of the MIX-cascade.

A better solution is to give each honest user or MIX the chance to prove that
he/it has sent correct messages only.

If an error occurs, each MIX will have to prove that it has worked correctly.
An attacking MIX cannot do so and is consequently identi�ed. If all MIXes
worked correctly, the user, who has sent the broken message is the attacker.

In order to prove the correctness of each participant (including the MIXes)
and to detect network errors (or attacks), all output should be digitally signed.



126 Oliver Berthold, Hannes Federrath, and Stefan Köpsell

Detailed description of procedure:

a. If a MIX cannot verify the signature, it requests the output of the previous
MIX again. If it does not get correct data after a certain period of time
(timeout), it will signal a signature-error. In this case, it is not clear who the
attacker is. Possible candidates are:
� the MIX itself,
� the previous MIX,
� the network between these MIXes.

b. If MIX i detects an error, it publishes the whole decrypted message (including
the error). Now everybody is able to encrypt that message by using the public
key of the MIX. If the result is identical with the received message, the MIX
has proved that it has decrypted the received message correctly, but that
message nevertheless contains an error. The error must have occurred at or
caused by the previous MIX.

c. All preceeding MIXes i� x (x = 1 : : : i� 1) are obliged to contribute to the
following �uncovering-procedure� until the error has been found:
1. MIX i � x has to provide the input-output correlation of the certain

message and everyone can verify that the MIX has decrypted the message
correctly (see b.).

2. If the error is found, the uncovering-procedure has to stop immediately
and the results have to be published. That means that MIXes i � x +
1 : : : i� 1 are attackers.

3. If the check was successful, the MIX has to publish the decrypted message
(like MIX i).

d. If all MIXes prove that they have worked correctly, only the sender of the
broken message can be the attacker. He is the only one who was able to
generate a message, which contains an error that would be detected by MIX
i.

Hence faulty MIXes can be excluded unless they have been proven that work-
ing correctly. A user, who produces errors can also be excluded from the group
of users.

A user can only carry through a DoS-attack for a long time if he periodically
changes his identity. This is possible if he works together with a corrupt certi�-
cate authority. After a period of time, no one will trust this certi�cate authority
any longer.

Nevertheless, there still remains a disadvantage: The trustworthy MIX has
to uncover his decryption. If all other MIXes are attackers and work together,
they could determine the sender and receiver of a message. However, the attacker
�loses� one MIX each time the uncovering-procedure will be performed.

If at least two MIXes are trustworthy, the uncovering-procedure won't break
the anonymity:

1. A user has cheated: There is no need to protect this user, because the
only reason for his message was to confuse the system.



Web MIXes: A system for anonymous and unobservable Internet access 127

2. A MIX has cheated: The �rst trustworthy MIX of the cascade, which
gets a faulty message, starts the uncovering-procedure. This procedure con-
tinues until the attacking MIX is reached. If the second trustworthy MIX
is before the attacking MIX, the attacker will not be able to detect the
sender of a message, because the trustworthy MIX will not perform an in-
valid uncovering-procedure.
If the second trustworthyMIX is behind, the receiver of the message is not de-
tectable. The attacker may get the correct message through the uncovering-
procedure, but the second trustworthy MIX protects the correlation between
sender an receiver.

The described uncovering-procedure is useful for the asymmetric encrypted
MIX messages as well as to verify the transmissions of the channels. On each
channel, a redundancy for each mix (i.e., a message digest of the data already
sent) is sent.

Additionally, each MIX has to store all transmitted data and the channel-
building-messages. If an error occurs, it will be able to prove that it has decrypted
the data of the channel correctly by using the symmetric key included in the
corresponding channel-building message.

One speci�c feature of the channel is that the data will reach the receiver
in very small pieces. If the veri�cation of the channel is done later, the attack
may have already been successful. This is possible, even if all other MIXes are
trustworthy. But in this case the attacker will lose at least one attacking MIX
every time he attacks a channel. This is not acceptable even for a very strong
attacker, so that the anonymity of a normal user will not be reduced, if the
uncovering-procedure is performed.

4 Other Design Issues

4.1 General

The main focus of our development process is the usability of the whole system.
This includes two aspects. Firstly we try to make the handling of the Client
(JAP) as easy as possible, so that many people are able to use it. This includes
the installation and con�guration as well as the design of the user interface.

The second aspect of usability covers the performance, especially the through-
put and the delay time of the anonymous network access.

4.2 The Client (JAP)

The development is based on the following requirements:

� The client must be executable on di�erent hardware/operating systems, in-
cluding at least Windows (95, 98, NT, 2000), Linux, Apple Macintosh.

� The client (JAP) must be easy to install by the user. It should be possible
to do this via the Internet or CD-ROM without special knowledge.



128 Oliver Berthold, Hannes Federrath, and Stefan Köpsell

� The con�guration must be as easy as possible. Even users without extensive
knowledge in security and cryptography should be able to con�gure the
system.

� Users must be protected from thinking to be anonymous if they use a mis-
con�gured client.

� A anonymous network access should be possible, even if the user is behind
a �rewall or proxy.

� The user interface must show and explain the user's current level of anony-
mity.

� It must be easy to switch between anonymous or non-anonymous network
access.

At the moment, JAVA is used as the programming language. That's because
of the JAVA-capability: �Write once, run anywhere�. Later it should be possi-
ble to develop special versions for each operating system. These versions will
provide a better performance and lesser resources will be needed. A suitable
integration into the look & feel of the target operating system will increase the
user-friendliness.

For the execution of the JAP it is necessary to have Java Runtime Environ-
ment Version 1.1.8 or equivalent, the GUI-library �Swing� (Version 1.1.1), and a
cryptographic library, presently �logi-crypt�, installed. These libraries are com-
pletely written in JAVA so that we can easily distribute them with our client.
All other �les needed for the JAP (the JAVA byte code, pictures, help �les and
so on) are included in one single archive (.jar-�le). This �le must be copied to
the target system and can directly be executed.

In order to make the con�guration process easy, it should be possible to down-
load the whole con�guration data via Internet. Of course, we have to develop a
secure infrastructure for this.

Furthermore, many users gain access to the Internet via an ISP. The provider
can force the surfer to use a special web-proxy that does not allow direct Internet
connections. In order to give such people the chance to surf anonymously, it must
be possible to connect to the �rst MIX via the web-proxy of the ISP. Therefore,
all data must be embedded into the HTTP-Protocol.

Fig. 3 shows the �Anonym-O-Meter�, our �rst attempt to give the user feed-
back about his current level of protection. This is an area of our future research
as well.

4.3 The MIX-Servers

A main point concerning the development of the MIXes is the performance, since
this has a great in�uence on the usability of the whole system. Nevertheless, we
also focus on easy administration and maintenance. In contrast to the JAP-user,
administrators have a deeper knowledge in computers, and possibly in security.

Our MIXes are implemented using C++ as programming language. We do
not use JAVA due to performance reasons. C++ has become a standard and



Web MIXes: A system for anonymous and unobservable Internet access 129

Fig. 3. Screenshot

is available on many operating systems. Di�erences result from using the sys-
tem functions like network input/output or from programming the graphical
user interface. Since MIXes are console applications without any GUI, this is
unproblematic. We only need a few system calls. The main tasks of MIXes are
cryptographic and algorithmic operations. In order to port the MIXes to a new
target operating system, only a few modules/functions must be adapted. Our
goal is to support a few important and capable operating systems (for instance
Linux, Solaris, AIX and Windows NT).

The administration is realized via a special network interface implemented
by the MIXes. Thus, it is possible to separate the MIXes and the administra-
tion tools physically and logically. Presently, we are thinking about a GUI for
administration purposes written in JAVA.

Acknowledgements

We would like to thank Prashant Agarwal, Christoph Federrath, Mary Weiss
and the anonymous referees for their very useful hints and suggestions.



130 Oliver Berthold, Hannes Federrath, and Stefan Köpsell

References

1. The Anonymizer. http://www.anonymizer.com
2. Michael K. Reiter, Aviel D. Rubin: Crowds: Anonymity for Web Transactions. ACM

Transactions on Information and System Security 1/1, November 1998, 66-92.
3. Onion Routing. http://www.onion-routing.net
4. The Freedom Network. http://www.freedom.net
5. Oliver Berthold, Hannes Federrath, Marit Köhntopp: Project �Anonymity and Un-

observability in the Internet�. Workshop on Freedom and Privacy by Design / Con-
ference on Freedom and Privacy 2000, Toronto/Canada, April 4-7, 2000, 57-65.

6. David Chaum: Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms. Communication of the ACM 24/2 (1981) 84-88.

7. David Chaum: Blind Signature System. Crypto '83, Plenum Press, New York 1984,
153.

8. Andreas P�tzmann, Birgit P�tzmann, Michael Waidner: ISDN-MIXes � Untraceable
Communication with Very Small Bandwidth Overhead. 7th IFIP International Con-
ference on Information Security (IFIP/Sec '91), Elsevier, Amsterdam 1991, 245-258.


	Source: in: Hannes Federrath (Ed.): Designing Privacy Enhancing Technologies. Proc. Workshop on Design Issues in Anonymity and Unobservability, LNCS 2009, Springer-Verlag, Heidelberg 2001, 115-129.


