PROTECTION IN MOBILE COMMUNICATION SYSTEMS

Trustworthy mobility management in telecommunication networks

Hannes Federrath

TU Dresden

INTRODUCTION

SECURITY DEFICITS

- Broadcast
- Trusted fixed station
- location hiding with MIXes

PERFORMANCE

SUMMARY

Security deficits of existing mobile networks

Example for security demands: Cooke, Brewster (1992)

- protection of user data
- 2. protection of signalling information, incl. location
- 3. user authentication, equipment verification
- 4. fraud prevention (correct billing)

Security deficits of existing mobile networks

- only symmetric cryptography (algorithms not officially published)
- only weak protection of location, i.e. against outsider attacks
- no protection against insiders (location, message content)
- no end-to-end services (authentication, encryption)
- no anonymous communication (similar to public phones)

Summary

- protection against external attackers only
- Mouly, Pautet: (1992)
 "...the designers of GSM did not aim at a level of security much higer than that of the fixed trunk network."

Trustworthy mobility management – The problem

Location management in GSM networks

Global System for Mobile Communication

- distributed storage at two stages
 - Home Location Register (HLR) & Visitor Location Register (VLR)
- network operator has a global view of the location information
- tracking of mobile users and movement profiles possible

The privacy aspect

- confidentiality of the location information

Basic concepts: Global broadcast

Global System for Mobile Communication (GSM)

«Global» broadcast

no storage of locations: global paging

Broadcast – No storage of locations

Performance

- estimated number of users in the year 2000 in Europe: 80 · 106

capacity needed for the broadcast channel: 10 Mbps
 (efficient implementation of implicit addressing, open implicit addresses)

Realization

- low earth orbit satellites (global availability), overlay cells
- commercial paging services

Basic concepts: Trusted fixed station

Global System for Mobile Communication (GSM)

Trusted fixed stations under control of each user

 replace databases by trusted devices in the fixed network

Security aspects

Methods with a trusted fixed station

Unauthorized requests by the network operator

- leads to localization
- defense: logging of requests by the trusted fixed station and logging of successfull mobile terminating calls, unusual frequency of differences indicate attacks
- normally: movement tracks with granularity of call frequencies

Observability of communication

 between the mobile user and his trusted fixed station:

location updating uncovers the location

decentralization increases efficiency, not security

Basic concepts: Location hiding

Global System for Mobile Communication (GSM)

MIXes in mobile communication

 covered storage of location information

Covered storage of location information

Location hiding

- location information is stored in a covered way
- MIX concept with untraceable return addresses is used
- mobile stations are involved into the MIX concept

location is not stored explicitly, but as a «path» through a MIX network

The MIX network

unlinkability of sender and recipient (Chaum 1981)

Functions of a MIX

- 1. store incoming messages
- 2. discard repeats
- 3. change encoding
- 4. change order
- 5. put messages out as a batch

Attributes usable for linkability

- timing relations between input and output
- coding relations
- coding is based on asymmetric cryptography

MIXes in mobile communications

- M_i MIX i in a cascade
- c_i public encryption key
- d_i private decryption key (only known by M_i)

Location registration — centralized

1. MS computes «covered» location information

$$\{LAI\} := c_1(k_1, c_2(k_2, c_3(k_3, ImpAdr)))$$

2. MS sends registration message (MS MIXes HLR)

$$\{LR\} := c_3 (c_2 (c_1 (IMSI, \{LAI\})))$$

notation does not show random numbers in {LR}

MIXes in mobile communications

- M_i MIX i in a cascade
- c_i public encryption key
- d_i private decryption key (only known by M_i)

Call setup (mobile terminating) — centralized

1. access HLR database entry

IMSI:
$$\{LAI\} = c_1(k_1, c_2(k_2, c_3(k_3, ImpAdr)))$$

2. send call setup message

3. MIXes: {LAI} is decrypted and Setup will be encrypted

$$\{\text{Setup}\} := k_3 (k_2 (k_1 (\text{Setup})))$$

4. Paging of the call

Performance

Message length on the air interface compared to GSM

Message length increases by a

- factor 1.2 for call setup and
- factor 6.8 for location updating

message length in bit	GSM	mobility MIXes
call setup	17282968	36248008
location updating	216324	22214502

Efficiency

Measure of efficiency

- ratio of available traffic channels: GSM mobility MIXes
- mobility behaviour of the users influences the efficiency

number of simultaneous available traffic channels

decrease in serveable number of users is about 10 % with N_{LUP}=88 in 5 seconds (corresponds to 20.000 users per cell)

Summary of the basic concepts to protect locations

No storage of location information

- broadcast of mobile terminating calls
- immense bandwidth for paging needed
- no costs for location updating

Trusted fixed stations (TFS) under control of each user

- TFS stores the location information
- or stores a pseudonym
- pseudonymous location management

Covered storage of location information

- no trusted fixed station needed
- unobservable communication
- decentralization of security functions (MIXes)

